Micromixing performance of a static mixer with an internal triply periodic minimal surface structure

IF 3.8 3区 工程技术 Q3 ENERGY & FUELS Chemical Engineering and Processing - Process Intensification Pub Date : 2025-03-10 DOI:10.1016/j.cep.2025.110264
Xinjun Yang , Xiaohan Lin , Dongxiang Wang , Fangyang Yuan , Wei Yu , Jiyun Du
{"title":"Micromixing performance of a static mixer with an internal triply periodic minimal surface structure","authors":"Xinjun Yang ,&nbsp;Xiaohan Lin ,&nbsp;Dongxiang Wang ,&nbsp;Fangyang Yuan ,&nbsp;Wei Yu ,&nbsp;Jiyun Du","doi":"10.1016/j.cep.2025.110264","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores TPMS-Diamond structures in static mixers to enhance mixing and reaction processes. Pressure drops were measured in the fine chemicals flow range (0.6–3 L/min), and correlations between Reynolds number, porosity, unit size, and friction factor were established. Energy dissipation rates were calculated, and micromixing performance was evaluated using the Villermaux–Dushman reaction system.The results indicated that micromixing predominantly occurred in the initial contact region, with smaller unit sizes enhancing micromixing performance. When the porosity, ε, is greater than or equal to 0.75, the local energy dissipation rate of the TPMS-Diamond structure was found to be similar to that of the Kenics mixer, yet it achieved significantly better micromixing performance. Additionally, the effects of H+ concentration, flow rate, and volume flow ratio on the micromixing performance of the TPMS-Diamond structure were analyzed. By applying experimental data and agglomeration model techniques, micromixing times for TPMS-Diamond structures with different unit sizes and porosity were determined to range from 0.15 to 1.02 ms, all shorter than those of Kenics mixers. The relationship between micromixing time and energy dissipation rate demonstrates the excellent energy efficiency of TPMS structures. These results demonstrate the substantial potential of TPMS structures in optimizing chemical reaction processes.</div></div>","PeriodicalId":9929,"journal":{"name":"Chemical Engineering and Processing - Process Intensification","volume":"212 ","pages":"Article 110264"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering and Processing - Process Intensification","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0255270125001138","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores TPMS-Diamond structures in static mixers to enhance mixing and reaction processes. Pressure drops were measured in the fine chemicals flow range (0.6–3 L/min), and correlations between Reynolds number, porosity, unit size, and friction factor were established. Energy dissipation rates were calculated, and micromixing performance was evaluated using the Villermaux–Dushman reaction system.The results indicated that micromixing predominantly occurred in the initial contact region, with smaller unit sizes enhancing micromixing performance. When the porosity, ε, is greater than or equal to 0.75, the local energy dissipation rate of the TPMS-Diamond structure was found to be similar to that of the Kenics mixer, yet it achieved significantly better micromixing performance. Additionally, the effects of H+ concentration, flow rate, and volume flow ratio on the micromixing performance of the TPMS-Diamond structure were analyzed. By applying experimental data and agglomeration model techniques, micromixing times for TPMS-Diamond structures with different unit sizes and porosity were determined to range from 0.15 to 1.02 ms, all shorter than those of Kenics mixers. The relationship between micromixing time and energy dissipation rate demonstrates the excellent energy efficiency of TPMS structures. These results demonstrate the substantial potential of TPMS structures in optimizing chemical reaction processes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.80
自引率
9.30%
发文量
408
审稿时长
49 days
期刊介绍: Chemical Engineering and Processing: Process Intensification is intended for practicing researchers in industry and academia, working in the field of Process Engineering and related to the subject of Process Intensification.Articles published in the Journal demonstrate how novel discoveries, developments and theories in the field of Process Engineering and in particular Process Intensification may be used for analysis and design of innovative equipment and processing methods with substantially improved sustainability, efficiency and environmental performance.
期刊最新文献
Facile preparation and characterization of α-aluminum oxide particles by ultrasonic spray pyrolysis Editorial Board Structural optimization of mining decanter centrifuge based on response surface method and multi-objective genetic algorithm Scaling process intensification technologies: what does it take to deploy? Improved design and performance study of a novel fixed tube-sheet heat exchanger utilizing a fluid drainage column
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1