Deep Reinforcement Learning and SQP-driven task offloading decisions in vehicular edge computing networks

IF 4.4 2区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Computer Networks Pub Date : 2025-03-11 DOI:10.1016/j.comnet.2025.111180
Ehzaz Mustafa , Junaid Shuja , Faisal Rehman , Abdallah Namoun , Muhammad Bilal , Kashif Bilal
{"title":"Deep Reinforcement Learning and SQP-driven task offloading decisions in vehicular edge computing networks","authors":"Ehzaz Mustafa ,&nbsp;Junaid Shuja ,&nbsp;Faisal Rehman ,&nbsp;Abdallah Namoun ,&nbsp;Muhammad Bilal ,&nbsp;Kashif Bilal","doi":"10.1016/j.comnet.2025.111180","DOIUrl":null,"url":null,"abstract":"<div><div>Vehicular Edge Computing offers low latency and reduced energy consumption for innovative applications through computation offloading in vehicular networks. However, making optimal offloading decisions and resource allocation remains challenging due to varying speeds, locations, channel quality constraints, and characteristics of both vehicles and tasks. To address these challenges, we propose a three-layered architecture and introduce a two-level algorithm named Sequential Quadratic Programming-based Dueling Double Deep Q Networks (SQ-DDTO) for optimal offloading actions and resource allocation. The joint computation offloading decision and resource allocation is a mixed integer nonlinear programming problem. To solve it, we first decouple the computation offloading decision sub-problem from resource allocation and address it using Dueling DDQN, which incorporates separate state values and action advantages. This decomposition allows for more granular control of computation tasks, leading to significantly better results. To enhance sample efficiency and learning in such complex networks, we employ Prioritized Experience Replay (PER). By prioritizing experiences based on their importance, PER enhances learning efficiency, allowing the agent to adapt quickly to changing conditions and optimize task offloading decisions in real time. Following this decomposition, we use Sequential Quadratic Programming (SQP) to solve for optimal resource allocation. SQP is chosen due to its effectiveness in handling non-convexity and complex constraints. Moreover, it has strong local convergence properties and utilizes gradient information which is crucial where rapid decision-making is necessary. Experimental results demonstrate the effectiveness of the proposed algorithm in terms of average delay, energy consumption, and task loss rate. For example. the proposed algorithm reduces the system cost by 25.1% compared to DQN and 16.67% compared to both DDQN and DDPG. Similarly. our method reduces the task loss rate by 37.06% compared to DQN, 34.78% compared to DDPG and 10.2% compared to DDQN.</div></div>","PeriodicalId":50637,"journal":{"name":"Computer Networks","volume":"262 ","pages":"Article 111180"},"PeriodicalIF":4.4000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389128625001483","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Vehicular Edge Computing offers low latency and reduced energy consumption for innovative applications through computation offloading in vehicular networks. However, making optimal offloading decisions and resource allocation remains challenging due to varying speeds, locations, channel quality constraints, and characteristics of both vehicles and tasks. To address these challenges, we propose a three-layered architecture and introduce a two-level algorithm named Sequential Quadratic Programming-based Dueling Double Deep Q Networks (SQ-DDTO) for optimal offloading actions and resource allocation. The joint computation offloading decision and resource allocation is a mixed integer nonlinear programming problem. To solve it, we first decouple the computation offloading decision sub-problem from resource allocation and address it using Dueling DDQN, which incorporates separate state values and action advantages. This decomposition allows for more granular control of computation tasks, leading to significantly better results. To enhance sample efficiency and learning in such complex networks, we employ Prioritized Experience Replay (PER). By prioritizing experiences based on their importance, PER enhances learning efficiency, allowing the agent to adapt quickly to changing conditions and optimize task offloading decisions in real time. Following this decomposition, we use Sequential Quadratic Programming (SQP) to solve for optimal resource allocation. SQP is chosen due to its effectiveness in handling non-convexity and complex constraints. Moreover, it has strong local convergence properties and utilizes gradient information which is crucial where rapid decision-making is necessary. Experimental results demonstrate the effectiveness of the proposed algorithm in terms of average delay, energy consumption, and task loss rate. For example. the proposed algorithm reduces the system cost by 25.1% compared to DQN and 16.67% compared to both DDQN and DDPG. Similarly. our method reduces the task loss rate by 37.06% compared to DQN, 34.78% compared to DDPG and 10.2% compared to DDQN.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Computer Networks
Computer Networks 工程技术-电信学
CiteScore
10.80
自引率
3.60%
发文量
434
审稿时长
8.6 months
期刊介绍: Computer Networks is an international, archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in the computer communications networking area. The audience includes researchers, managers and operators of networks as well as designers and implementors. The Editorial Board will consider any material for publication that is of interest to those groups.
期刊最新文献
Deep Reinforcement Learning and SQP-driven task offloading decisions in vehicular edge computing networks Decentralized traffic detection utilizing blockchain-federated learning with quality-driven aggregation RAGN: Detecting unknown malicious network traffic using a robust adaptive graph neural network Editorial Board Social network botnet attack mitigation model for cloud
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1