{"title":"Recent advances in CRISPR-Cas system for Saccharomyces cerevisiae engineering","authors":"Xinxin Wu , Xiaowen Wan , Hongbin Yu , Huayi Liu","doi":"10.1016/j.biotechadv.2025.108557","DOIUrl":null,"url":null,"abstract":"<div><div>Yeast <em>Saccharomyces cerevisiae</em> (<em>S. cerevisiae</em>) is a crucial industrial platform for producing a wide range of chemicals, fuels, pharmaceuticals, and nutraceutical ingredients. It is also commonly used as a model organism for fundamental research. In recent years, the CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated proteins) system has become the preferred technology for genetic manipulation in <em>S. cerevisiae</em> owing to its high efficiency, precision, and user-friendliness. This system, along with its extensive toolbox, has significantly accelerated the construction of pathways, enzyme optimization, and metabolic engineering in <em>S. cerevisiae</em>. Furthermore, it has allowed researchers to accelerate phenotypic evolution and gain deeper insights into fundamental biological questions, such as genotype-phenotype relationships. In this review, we summarize the latest advancements in the CRISPR-Cas toolbox for <em>S. cerevisiae</em> and highlight its applications in yeast cell factory construction and optimization, enzyme and phenotypic evolution, genome-scale functional interrogation, gene drives, and the advancement of biotechnologies. Finally, we discuss the challenges and potential for further optimization and applications of the CRISPR-Cas system in <em>S. cerevisiae</em>.</div></div>","PeriodicalId":8946,"journal":{"name":"Biotechnology advances","volume":"81 ","pages":"Article 108557"},"PeriodicalIF":12.1000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology advances","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0734975025000436","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Yeast Saccharomyces cerevisiae (S. cerevisiae) is a crucial industrial platform for producing a wide range of chemicals, fuels, pharmaceuticals, and nutraceutical ingredients. It is also commonly used as a model organism for fundamental research. In recent years, the CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated proteins) system has become the preferred technology for genetic manipulation in S. cerevisiae owing to its high efficiency, precision, and user-friendliness. This system, along with its extensive toolbox, has significantly accelerated the construction of pathways, enzyme optimization, and metabolic engineering in S. cerevisiae. Furthermore, it has allowed researchers to accelerate phenotypic evolution and gain deeper insights into fundamental biological questions, such as genotype-phenotype relationships. In this review, we summarize the latest advancements in the CRISPR-Cas toolbox for S. cerevisiae and highlight its applications in yeast cell factory construction and optimization, enzyme and phenotypic evolution, genome-scale functional interrogation, gene drives, and the advancement of biotechnologies. Finally, we discuss the challenges and potential for further optimization and applications of the CRISPR-Cas system in S. cerevisiae.
期刊介绍:
Biotechnology Advances is a comprehensive review journal that covers all aspects of the multidisciplinary field of biotechnology. The journal focuses on biotechnology principles and their applications in various industries, agriculture, medicine, environmental concerns, and regulatory issues. It publishes authoritative articles that highlight current developments and future trends in the field of biotechnology. The journal invites submissions of manuscripts that are relevant and appropriate. It targets a wide audience, including scientists, engineers, students, instructors, researchers, practitioners, managers, governments, and other stakeholders in the field. Additionally, special issues are published based on selected presentations from recent relevant conferences in collaboration with the organizations hosting those conferences.