{"title":"Advanced in vitro evaluation of drug-induced kidney injury using microphysiological systems in drug discovery and development","authors":"Hiroshi Arakawa , Kohei Matsushita , Naoki Ishiguro","doi":"10.1016/j.dmpk.2025.101056","DOIUrl":null,"url":null,"abstract":"<div><div>Drug-induced kidney injury (DIKI) is a major cause of acute kidney injury (AKI). Given concerns about animal welfare and the need for more accurate prediction of human events, there is an urgent need to develop an <em>in vitro</em> evaluation method for DIKI using human cells. Renal proximal tubular epithelial cells (RPTECs) are the main targets of DIKI in drug discovery and development because of their abundant expression of drug transporters that contribute to renal-specific drug distribution. In general, physiological kidney function is significantly reduced in primary cell monolayer culture systems. However, with recent advances in cell engineering and regenerative medicine, human kidney-derived cell culture systems, with higher kidney function compared to conventional systems, have been established. For example, three-dimensional cultured RPTECs show enhanced expression of drug transporters and higher predictive performance than monolayer culture systems. The use of organs-on-a-chip with liver and kidney co-cultures also allows the detection of drug metabolite-induced nephrotoxicity. Kidney organoids differentiated from induced pluripotent stem cells (iPS) have also been established. In this review, we introduce a recently established renal cell culture system that includes a microphysiological system, and review the <em>in vitro</em> methods used to evaluate DIKI in RPTECs.</div></div>","PeriodicalId":11298,"journal":{"name":"Drug Metabolism and Pharmacokinetics","volume":"61 ","pages":"Article 101056"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Metabolism and Pharmacokinetics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1347436725000060","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Drug-induced kidney injury (DIKI) is a major cause of acute kidney injury (AKI). Given concerns about animal welfare and the need for more accurate prediction of human events, there is an urgent need to develop an in vitro evaluation method for DIKI using human cells. Renal proximal tubular epithelial cells (RPTECs) are the main targets of DIKI in drug discovery and development because of their abundant expression of drug transporters that contribute to renal-specific drug distribution. In general, physiological kidney function is significantly reduced in primary cell monolayer culture systems. However, with recent advances in cell engineering and regenerative medicine, human kidney-derived cell culture systems, with higher kidney function compared to conventional systems, have been established. For example, three-dimensional cultured RPTECs show enhanced expression of drug transporters and higher predictive performance than monolayer culture systems. The use of organs-on-a-chip with liver and kidney co-cultures also allows the detection of drug metabolite-induced nephrotoxicity. Kidney organoids differentiated from induced pluripotent stem cells (iPS) have also been established. In this review, we introduce a recently established renal cell culture system that includes a microphysiological system, and review the in vitro methods used to evaluate DIKI in RPTECs.
期刊介绍:
DMPK publishes original and innovative scientific papers that address topics broadly related to xenobiotics. The term xenobiotic includes medicinal as well as environmental and agricultural chemicals and macromolecules. The journal is organized into sections as follows:
- Drug metabolism / Biotransformation
- Pharmacokinetics and pharmacodynamics
- Toxicokinetics and toxicodynamics
- Drug-drug interaction / Drug-food interaction
- Mechanism of drug absorption and disposition (including transporter)
- Drug delivery system
- Clinical pharmacy and pharmacology
- Analytical method
- Factors affecting drug metabolism and transport
- Expression of genes for drug-metabolizing enzymes and transporters
- Pharmacogenetics and pharmacogenomics
- Pharmacoepidemiology.