Study on the year-round demand flexibility in residential buildings: Control strategies and quantification methods

IF 6.6 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Energy and Buildings Pub Date : 2025-03-10 DOI:10.1016/j.enbuild.2025.115582
Weilin Li , Rufei Li , Wenhai Sui , Hao Yu , Haichao Gao , Liu Yang
{"title":"Study on the year-round demand flexibility in residential buildings: Control strategies and quantification methods","authors":"Weilin Li ,&nbsp;Rufei Li ,&nbsp;Wenhai Sui ,&nbsp;Hao Yu ,&nbsp;Haichao Gao ,&nbsp;Liu Yang","doi":"10.1016/j.enbuild.2025.115582","DOIUrl":null,"url":null,"abstract":"<div><div>The transition to a renewable energy-centric system necessitates enhanced demand flexibility in buildings. The load characteristics of electrical appliances in residential buildings are influenced by various factors, including seasonal variations and user habits. However, there is a notable lack of comparative research on flexible load control across multiple seasons and day types throughout the year, as well as a scarcity of indexes and their grading applications that can comprehensively describe the multi-dimensional building flexibility characteristics. Therefore, this study focuses on typical residential buildings in Cold region and explores the flexible control effects of various strategies in diverse seasonal and day type scenarios. An innovation “digitized-graded” index system is established, grading index values based on flexibility strength, duration, and maximum reduction, thereby providing a comprehensive understanding of demand flexibility from both quantitative and qualitative perspectives. The findings reveal that different control strategies excel in different seasons and distinct evaluation dimensions. Specifically, the strategy of changing the air conditioning temperature set point performs best in summer, while the intermittent start-stop cycles strategy is more suitable for winter. Furthermore, these strategies dominate in <em>Flexibility Strength Index</em> (<em>FSI</em>) and <em>Flexibility Duration Index</em> (<em>FDI</em>), achieving maximum values of 39.3 % and 14 h, respectively, signifying “extremely strong flexibility” and “extremely long-term flexibility”. Adjusting the lighting intensity is optimal in the transition season, followed by summer, and is least effective in winter. Additionally, shiftable loads using time transfer strategy exhibit a <em>Maximum Reduction Index</em> (<em>MRI</em>) of up to 13.9, indicating “extremely heavy reduction flexibility”.</div></div>","PeriodicalId":11641,"journal":{"name":"Energy and Buildings","volume":"336 ","pages":"Article 115582"},"PeriodicalIF":6.6000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and Buildings","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378778825003123","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The transition to a renewable energy-centric system necessitates enhanced demand flexibility in buildings. The load characteristics of electrical appliances in residential buildings are influenced by various factors, including seasonal variations and user habits. However, there is a notable lack of comparative research on flexible load control across multiple seasons and day types throughout the year, as well as a scarcity of indexes and their grading applications that can comprehensively describe the multi-dimensional building flexibility characteristics. Therefore, this study focuses on typical residential buildings in Cold region and explores the flexible control effects of various strategies in diverse seasonal and day type scenarios. An innovation “digitized-graded” index system is established, grading index values based on flexibility strength, duration, and maximum reduction, thereby providing a comprehensive understanding of demand flexibility from both quantitative and qualitative perspectives. The findings reveal that different control strategies excel in different seasons and distinct evaluation dimensions. Specifically, the strategy of changing the air conditioning temperature set point performs best in summer, while the intermittent start-stop cycles strategy is more suitable for winter. Furthermore, these strategies dominate in Flexibility Strength Index (FSI) and Flexibility Duration Index (FDI), achieving maximum values of 39.3 % and 14 h, respectively, signifying “extremely strong flexibility” and “extremely long-term flexibility”. Adjusting the lighting intensity is optimal in the transition season, followed by summer, and is least effective in winter. Additionally, shiftable loads using time transfer strategy exhibit a Maximum Reduction Index (MRI) of up to 13.9, indicating “extremely heavy reduction flexibility”.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy and Buildings
Energy and Buildings 工程技术-工程:土木
CiteScore
12.70
自引率
11.90%
发文量
863
审稿时长
38 days
期刊介绍: An international journal devoted to investigations of energy use and efficiency in buildings Energy and Buildings is an international journal publishing articles with explicit links to energy use in buildings. The aim is to present new research results, and new proven practice aimed at reducing the energy needs of a building and improving indoor environment quality.
期刊最新文献
Life cycle integrated multi-criteria decision model for roof assessment Cost-effective and low-carbon solutions for holistic rural building renovation in severe cold climate Circular deep renovation versus demolition with reconstruction: Environmental and financial evaluation to support decision making in the construction sector Cool wall claddings for a sustainable future: A comprehensive review on mitigating urban heat island effects and reducing carbon emissions in the built environment Design optimization of a composite typology based on RC columns and THVS girders to reduce economic cost, emissions, and embodied energy of frame building construction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1