SiO2 doped halogen-rich argyrodites for high-performance all-solid-state lithium–sulfur batteries

IF 3 4区 材料科学 Q3 CHEMISTRY, PHYSICAL Solid State Ionics Pub Date : 2025-03-14 DOI:10.1016/j.ssi.2025.116813
Jie-Fu Zhuo , Zhi-Feng Yao
{"title":"SiO2 doped halogen-rich argyrodites for high-performance all-solid-state lithium–sulfur batteries","authors":"Jie-Fu Zhuo ,&nbsp;Zhi-Feng Yao","doi":"10.1016/j.ssi.2025.116813","DOIUrl":null,"url":null,"abstract":"<div><div>The argyrodite-type sulfide electrolytes (Li<sub>6</sub>PS<sub>5</sub>X, X = Cl, Br, I) have demonstrated numerous benefits for high-performance and secure all-solid-state lithium‑sulfur batteries (ASSLSBs). These advantages include their rapid lithium (Li) ion conduction and exceptional compatibility with the anode. Nevertheless, despite these benefits, the key obstacles for their implementation are the need for higher room-temperature ionic conductivity, improved air/moisture compatibility, and enhanced electrochemical stability. In this study, we propose a halogen-rich argyrodite (Li<sub>5.3</sub>PS<sub>4.3</sub>Cl<sub>1.7-x</sub>Br<sub>x</sub>) to obtain ultrafast ionic conductivity at ambient temperature. To enhance the ionic transport channel, the anion disorder on the site is optimized and the Li vacancies in the structure are increased by substituting anions with halogens (Cl/Br). The Li<sub>5.3</sub>PS<sub>4.3</sub>Cl<sub>0.85</sub>Br<sub>0.85</sub> is synthesized effectively by a high-energy ball milling process, resulting in a remarkable ionic conductivity of 9.07 mS⋅cm<sup>−1</sup> at room temperature. In addition, a SiO<sub>2</sub> dopant is utilized to strengthen the lattice structure of the solid-state electrolyte (Li<sub>5.3+y</sub>Si<sub>y</sub>P<sub>1-y</sub>S<sub>4.3-2y</sub>O<sub>2y</sub>Cl<sub>0.85</sub>Br<sub>0.85</sub>) in order to improve its resistance to air/moisture and enhance its electrochemical stability within specific voltage ranges. The Li<sub>5.4</sub>Si<sub>0.1</sub>P<sub>0.9</sub>S<sub>4.1</sub>O<sub>0.2</sub>Cl<sub>0.85</sub>Br<sub>0.85</sub> with optimized composition demonstrates an ionic conductivity of 8.2 mS⋅cm<sup>−1</sup> at room temperature and exceptional stability in air. The ASSLSBs containing Li<sub>5.4</sub>Si<sub>0.1</sub>P<sub>0.9</sub>S<sub>4.1</sub>O<sub>0.2</sub>Cl<sub>0.85</sub>Br<sub>0.85</sub> exhibit impressive specific capacities of 1191 mAh⋅g<sup>−1</sup> (0.1C after the initial cycle) and 989 mAh⋅g<sup>−1</sup> (0.1C after 100 cycles) at room temperature. Additionally, they demonstrate significant cyclability (83.04 % after 100 cycles) and excellent Coulombic efficiency (&gt;99.5 %). This study presents a novel strategy to promote the application of sulfide electrolytes in fabricating ASSLSBs.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"423 ","pages":"Article 116813"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167273825000323","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The argyrodite-type sulfide electrolytes (Li6PS5X, X = Cl, Br, I) have demonstrated numerous benefits for high-performance and secure all-solid-state lithium‑sulfur batteries (ASSLSBs). These advantages include their rapid lithium (Li) ion conduction and exceptional compatibility with the anode. Nevertheless, despite these benefits, the key obstacles for their implementation are the need for higher room-temperature ionic conductivity, improved air/moisture compatibility, and enhanced electrochemical stability. In this study, we propose a halogen-rich argyrodite (Li5.3PS4.3Cl1.7-xBrx) to obtain ultrafast ionic conductivity at ambient temperature. To enhance the ionic transport channel, the anion disorder on the site is optimized and the Li vacancies in the structure are increased by substituting anions with halogens (Cl/Br). The Li5.3PS4.3Cl0.85Br0.85 is synthesized effectively by a high-energy ball milling process, resulting in a remarkable ionic conductivity of 9.07 mS⋅cm−1 at room temperature. In addition, a SiO2 dopant is utilized to strengthen the lattice structure of the solid-state electrolyte (Li5.3+ySiyP1-yS4.3-2yO2yCl0.85Br0.85) in order to improve its resistance to air/moisture and enhance its electrochemical stability within specific voltage ranges. The Li5.4Si0.1P0.9S4.1O0.2Cl0.85Br0.85 with optimized composition demonstrates an ionic conductivity of 8.2 mS⋅cm−1 at room temperature and exceptional stability in air. The ASSLSBs containing Li5.4Si0.1P0.9S4.1O0.2Cl0.85Br0.85 exhibit impressive specific capacities of 1191 mAh⋅g−1 (0.1C after the initial cycle) and 989 mAh⋅g−1 (0.1C after 100 cycles) at room temperature. Additionally, they demonstrate significant cyclability (83.04 % after 100 cycles) and excellent Coulombic efficiency (>99.5 %). This study presents a novel strategy to promote the application of sulfide electrolytes in fabricating ASSLSBs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Solid State Ionics
Solid State Ionics 物理-物理:凝聚态物理
CiteScore
6.10
自引率
3.10%
发文量
152
审稿时长
58 days
期刊介绍: This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on: (i) physics and chemistry of defects in solids; (ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering; (iii) ion transport measurements, mechanisms and theory; (iv) solid state electrochemistry; (v) ionically-electronically mixed conducting solids. Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties. Review papers and relevant symposium proceedings are welcome.
期刊最新文献
SiO2 doped halogen-rich argyrodites for high-performance all-solid-state lithium–sulfur batteries Rational molecular design of partly fluorinated fuel cell membranes with high proton conductivity under low-humidity conditions Editorial Board Construction organic composite gel polymer electrolyte for stable solid-state lithium metal batteries Investigation of the effects of magnetic field on the stability and transport properties of lithium ions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1