Metabolism, Function, Molecular Mechanism, and Application of Carotenoids in Coloration of Aquatic Animals

IF 8.8 1区 农林科学 Q1 FISHERIES Reviews in Aquaculture Pub Date : 2025-03-14 DOI:10.1111/raq.70016
Yongguan Liao, Bo Zhang, Deshou Wang, Dongneng Jiang, Chunhua Zhu, Siping Deng, Huapu Chen, Guangli Li, Hongjuan Shi
{"title":"Metabolism, Function, Molecular Mechanism, and Application of Carotenoids in Coloration of Aquatic Animals","authors":"Yongguan Liao,&nbsp;Bo Zhang,&nbsp;Deshou Wang,&nbsp;Dongneng Jiang,&nbsp;Chunhua Zhu,&nbsp;Siping Deng,&nbsp;Huapu Chen,&nbsp;Guangli Li,&nbsp;Hongjuan Shi","doi":"10.1111/raq.70016","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Among vertebrates, aquatic animals have a wide variety of body color. Yellow and red coloration, an important economic trait of aquatic animals, plays pivotal roles in ornamental value and consumption. Fish possess the most chromatophore types in vertebrates, and carotenoids primarily contribute to erythrophore and xanthophore pigmentation. Carotenoid metabolism and regulation of chromatophore development have long been a focus of selective breeding programs in fish. In crustaceans, carotenoids have been proven to be involved in enhancing coloration. However, the carotenoid requirements vary among different aquatic animals. The metabolic pathways in vivo and biochemical processes have not been well summarized. Thus, in this review, we introduced various types of carotenoids and their metabolic pathways in different aquatic species and described a similar mechanism of ketocarotenoid biosynthesis in fish and birds. We have focused on carotenoid metabolism processes and several significant genes involved in the coloration of vertebrates, such as scavenger receptors, apolipoproteins, ketolases, and β-carotene oxygenase, and their applications in aquaculture. In addition, we also summarized the current problems of carotenoid addition in diets and emphasized the importance of aquatic breeding and molecular biotechnology in carotenoid coloration and ornamental fish breeding. Finally, we provided our perspectives on fish carotenoid pigmentation research and the aquatic industry. This review will enhance our understanding of fish carotenoid metabolism as well as provide deeper insights into the molecular mechanism of fish muscle and skin pigmentation. It will benefit the production of feed additives and selective breeding for ornamental aquatic animals.</p>\n </div>","PeriodicalId":227,"journal":{"name":"Reviews in Aquaculture","volume":"17 2","pages":""},"PeriodicalIF":8.8000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Aquaculture","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/raq.70016","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0

Abstract

Among vertebrates, aquatic animals have a wide variety of body color. Yellow and red coloration, an important economic trait of aquatic animals, plays pivotal roles in ornamental value and consumption. Fish possess the most chromatophore types in vertebrates, and carotenoids primarily contribute to erythrophore and xanthophore pigmentation. Carotenoid metabolism and regulation of chromatophore development have long been a focus of selective breeding programs in fish. In crustaceans, carotenoids have been proven to be involved in enhancing coloration. However, the carotenoid requirements vary among different aquatic animals. The metabolic pathways in vivo and biochemical processes have not been well summarized. Thus, in this review, we introduced various types of carotenoids and their metabolic pathways in different aquatic species and described a similar mechanism of ketocarotenoid biosynthesis in fish and birds. We have focused on carotenoid metabolism processes and several significant genes involved in the coloration of vertebrates, such as scavenger receptors, apolipoproteins, ketolases, and β-carotene oxygenase, and their applications in aquaculture. In addition, we also summarized the current problems of carotenoid addition in diets and emphasized the importance of aquatic breeding and molecular biotechnology in carotenoid coloration and ornamental fish breeding. Finally, we provided our perspectives on fish carotenoid pigmentation research and the aquatic industry. This review will enhance our understanding of fish carotenoid metabolism as well as provide deeper insights into the molecular mechanism of fish muscle and skin pigmentation. It will benefit the production of feed additives and selective breeding for ornamental aquatic animals.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
24.80
自引率
5.80%
发文量
109
审稿时长
>12 weeks
期刊介绍: Reviews in Aquaculture is a journal that aims to provide a platform for reviews on various aspects of aquaculture science, techniques, policies, and planning. The journal publishes fully peer-reviewed review articles on topics including global, regional, and national production and market trends in aquaculture, advancements in aquaculture practices and technology, interactions between aquaculture and the environment, indigenous and alien species in aquaculture, genetics and its relation to aquaculture, as well as aquaculture product quality and traceability. The journal is indexed and abstracted in several databases including AgBiotech News & Information (CABI), AgBiotechNet, Agricultural Engineering Abstracts, Environment Index (EBSCO Publishing), SCOPUS (Elsevier), and Web of Science (Clarivate Analytics) among others.
期刊最新文献
Shot in the Foot: Unintended Consequences of Using Inorganic Fertilizer in Commercial Tropical Eucheumatoid Seaweed Farming An In-Depth Analysis of the Finfish Aquaculture in Türkiye: Current Status, Challenges, and Future Prospects Metabolism, Function, Molecular Mechanism, and Application of Carotenoids in Coloration of Aquatic Animals Strengthening African Aquaculture Viral Pathogens in Free-Living Salmonids: Aquaculture and Ecosystem Implications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1