Ramona E Weber, Kiana M Schulze, Nathan J Kenney, Britton C Scheuermann, Olivia N Kunkel, Carl J Ade, Timothy I Musch, Brad J Behnke, David C Poole
{"title":"Tumor bearing in untreated breast cancer decreases exercise tolerance without lowering maximal oxygen uptake in rats.","authors":"Ramona E Weber, Kiana M Schulze, Nathan J Kenney, Britton C Scheuermann, Olivia N Kunkel, Carl J Ade, Timothy I Musch, Brad J Behnke, David C Poole","doi":"10.62347/QCCZ2316","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer patients' maximal O<sub>2</sub> uptake (V̇O<sub>2</sub>max) values average 60-80% of age-predicted values which is often attributed to adjuvant therapy rather than risk factors, comorbidities, or the tumor and associated factors (e.g., pro-inflammatory cytokines). It is crucial to understand the physiological mechanisms behind exercise intolerance in breast cancer patients to enhance targeted interventions; however, the effect of breast cancer, as an isolated condition on V̇O<sub>2</sub>max, exercise tolerance, and resting cardiac function has not been investigated. We hypothesized that breast cancer, in the absence of underlying conditions or chemotherapy, would lower V̇O<sub>2</sub>max, exercise tolerance, and cardiac function in proportion to tumor mass. Female Fischer-344 rats (~6-8 months, n = 8) were acclimatized to treadmill running for 5 days at 25 m/min for 5 min/day. To measure V̇O<sub>2</sub>max, rats were placed within a plexiglass metabolic chamber connected to CO<sub>2</sub> and O<sub>2</sub> analyzers. Tests began at 25 m/min and increased (5 m/min) until exhaustion. Cardiac function was determined by echocardiography before rats received a mammary intraductal injection of rat adenocarcinoma cells (MATBIII, 6 × 10<sup>3</sup> in 50 µl saline). Tumor growth was monitored daily and ~7 days following palpation (~24 days post-injection), V̇O<sub>2</sub>max and echocardiography measurements were repeated. Tumor mass and volume were 2.1 ± 0.6 g and 1685 ± 428 (range 256-3749) mm<sup>3</sup>, respectively. Body mass (217 ± 6 vs 218 ± 6 g), V̇O<sub>2</sub>max (72.1 ± 2.7 vs 70.0 ± 2.8 ml/kg·min; P > 0.05), and all measures of cardiac function were unchanged following tumor formation, with no significant correlation between tumor mass and V̇O<sub>2</sub>max (P > 0.05). However, time to exhaustion (376 ± 20 vs 297 ± 25 s), final treadmill speed (48 ± 1 vs 42 ± 2 m/s), distance run (209 ± 16 vs 152 ± 18 m), and total work (45 ± 3 vs 32 ± 4 m·kg) were significantly reduced with tumor bearing. Contrary to our hypothesis, breast cancer did not affect V̇O<sub>2</sub>max or cardiac function, but reduced exercise tolerance.</p>","PeriodicalId":7437,"journal":{"name":"American journal of cancer research","volume":"15 2","pages":"487-500"},"PeriodicalIF":3.6000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11897639/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.62347/QCCZ2316","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Breast cancer patients' maximal O2 uptake (V̇O2max) values average 60-80% of age-predicted values which is often attributed to adjuvant therapy rather than risk factors, comorbidities, or the tumor and associated factors (e.g., pro-inflammatory cytokines). It is crucial to understand the physiological mechanisms behind exercise intolerance in breast cancer patients to enhance targeted interventions; however, the effect of breast cancer, as an isolated condition on V̇O2max, exercise tolerance, and resting cardiac function has not been investigated. We hypothesized that breast cancer, in the absence of underlying conditions or chemotherapy, would lower V̇O2max, exercise tolerance, and cardiac function in proportion to tumor mass. Female Fischer-344 rats (~6-8 months, n = 8) were acclimatized to treadmill running for 5 days at 25 m/min for 5 min/day. To measure V̇O2max, rats were placed within a plexiglass metabolic chamber connected to CO2 and O2 analyzers. Tests began at 25 m/min and increased (5 m/min) until exhaustion. Cardiac function was determined by echocardiography before rats received a mammary intraductal injection of rat adenocarcinoma cells (MATBIII, 6 × 103 in 50 µl saline). Tumor growth was monitored daily and ~7 days following palpation (~24 days post-injection), V̇O2max and echocardiography measurements were repeated. Tumor mass and volume were 2.1 ± 0.6 g and 1685 ± 428 (range 256-3749) mm3, respectively. Body mass (217 ± 6 vs 218 ± 6 g), V̇O2max (72.1 ± 2.7 vs 70.0 ± 2.8 ml/kg·min; P > 0.05), and all measures of cardiac function were unchanged following tumor formation, with no significant correlation between tumor mass and V̇O2max (P > 0.05). However, time to exhaustion (376 ± 20 vs 297 ± 25 s), final treadmill speed (48 ± 1 vs 42 ± 2 m/s), distance run (209 ± 16 vs 152 ± 18 m), and total work (45 ± 3 vs 32 ± 4 m·kg) were significantly reduced with tumor bearing. Contrary to our hypothesis, breast cancer did not affect V̇O2max or cardiac function, but reduced exercise tolerance.
期刊介绍:
The American Journal of Cancer Research (AJCR) (ISSN 2156-6976), is an independent open access, online only journal to facilitate rapid dissemination of novel discoveries in basic science and treatment of cancer. It was founded by a group of scientists for cancer research and clinical academic oncologists from around the world, who are devoted to the promotion and advancement of our understanding of the cancer and its treatment. The scope of AJCR is intended to encompass that of multi-disciplinary researchers from any scientific discipline where the primary focus of the research is to increase and integrate knowledge about etiology and molecular mechanisms of carcinogenesis with the ultimate aim of advancing the cure and prevention of this increasingly devastating disease. To achieve these aims AJCR will publish review articles, original articles and new techniques in cancer research and therapy. It will also publish hypothesis, case reports and letter to the editor. Unlike most other open access online journals, AJCR will keep most of the traditional features of paper print that we are all familiar with, such as continuous volume, issue numbers, as well as continuous page numbers to retain our comfortable familiarity towards an academic journal.