{"title":"Patho-Net: enhancing breast cancer classification using deep learning and explainable artificial intelligence.","authors":"Kalappanaickenpatty Suriaprakasam Manojee, Athiappan Rajiv Kannan","doi":"10.62347/XKFN1793","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer is a disorder affecting women globally, and hence an early and precise classification is the best possible treatment to increase the survival rate. However, the breast cancer classification faced difficulties in scalability, fixed-size input images, and overfitting on limited datasets. To tackle these issues, this work proposes a Patho-Net model for breast cancer classification that overcomes the problems of scalability in color normalization, integrates the Gated Recurrent Unit (GRU) network with the U-Net architecture to process images without the need for resizing and computational efficiency, and addresses the overfitting problems. The proposed model collects and normalizes histopathology images using automated reference image selection with the Reinhard method for color standardization. Also, the Enhanced Adaptive Non-Local Means (EANLM) filtering is utilized for noise removal to preserve image features. These preprocessed images undergo semantic segmentation to isolate specific parts of an image, followed by feature extraction using an Improved Gray Level Co-occurrence Matrix (I-GLCM) to reveal fine patterns and textures in images. These features serve as input into the classification U-Net model integrated with GRU networks to improve the model performance. Finally, the classification result is expanded, and XAI is used for clear visual explanations of the model's predictions. The proposed Patho-Net model, which uses the 100X BreakHis dataset, achieves an accuracy of 98.90% in the classification of breast cancer.</p>","PeriodicalId":7437,"journal":{"name":"American journal of cancer research","volume":"15 2","pages":"754-768"},"PeriodicalIF":3.6000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11897615/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of cancer research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.62347/XKFN1793","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Breast cancer is a disorder affecting women globally, and hence an early and precise classification is the best possible treatment to increase the survival rate. However, the breast cancer classification faced difficulties in scalability, fixed-size input images, and overfitting on limited datasets. To tackle these issues, this work proposes a Patho-Net model for breast cancer classification that overcomes the problems of scalability in color normalization, integrates the Gated Recurrent Unit (GRU) network with the U-Net architecture to process images without the need for resizing and computational efficiency, and addresses the overfitting problems. The proposed model collects and normalizes histopathology images using automated reference image selection with the Reinhard method for color standardization. Also, the Enhanced Adaptive Non-Local Means (EANLM) filtering is utilized for noise removal to preserve image features. These preprocessed images undergo semantic segmentation to isolate specific parts of an image, followed by feature extraction using an Improved Gray Level Co-occurrence Matrix (I-GLCM) to reveal fine patterns and textures in images. These features serve as input into the classification U-Net model integrated with GRU networks to improve the model performance. Finally, the classification result is expanded, and XAI is used for clear visual explanations of the model's predictions. The proposed Patho-Net model, which uses the 100X BreakHis dataset, achieves an accuracy of 98.90% in the classification of breast cancer.
期刊介绍:
The American Journal of Cancer Research (AJCR) (ISSN 2156-6976), is an independent open access, online only journal to facilitate rapid dissemination of novel discoveries in basic science and treatment of cancer. It was founded by a group of scientists for cancer research and clinical academic oncologists from around the world, who are devoted to the promotion and advancement of our understanding of the cancer and its treatment. The scope of AJCR is intended to encompass that of multi-disciplinary researchers from any scientific discipline where the primary focus of the research is to increase and integrate knowledge about etiology and molecular mechanisms of carcinogenesis with the ultimate aim of advancing the cure and prevention of this increasingly devastating disease. To achieve these aims AJCR will publish review articles, original articles and new techniques in cancer research and therapy. It will also publish hypothesis, case reports and letter to the editor. Unlike most other open access online journals, AJCR will keep most of the traditional features of paper print that we are all familiar with, such as continuous volume, issue numbers, as well as continuous page numbers to retain our comfortable familiarity towards an academic journal.