Development and evaluation of a deep learning framework for pelvic and sacral tumor segmentation from multi-sequence MRI: a retrospective study.

IF 3.5 2区 医学 Q2 ONCOLOGY Cancer Imaging Pub Date : 2025-03-13 DOI:10.1186/s40644-025-00850-8
Ping Yin, Weidao Chen, Qianrui Fan, Ruize Yu, Xia Liu, Tao Liu, Dawei Wang, Nan Hong
{"title":"Development and evaluation of a deep learning framework for pelvic and sacral tumor segmentation from multi-sequence MRI: a retrospective study.","authors":"Ping Yin, Weidao Chen, Qianrui Fan, Ruize Yu, Xia Liu, Tao Liu, Dawei Wang, Nan Hong","doi":"10.1186/s40644-025-00850-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Accurate segmentation of pelvic and sacral tumors (PSTs) in multi-sequence magnetic resonance imaging (MRI) is essential for effective treatment and surgical planning.</p><p><strong>Purpose: </strong>To develop a deep learning (DL) framework for efficient segmentation of PSTs from multi-sequence MRI.</p><p><strong>Materials and methods: </strong>This study included a total of 616 patients with pathologically confirmed PSTs between April 2011 to May 2022. We proposed a practical DL framework that integrates a 2.5D U-net and MobileNetV2 for automatic PST segmentation with a fast annotation strategy across multiple MRI sequences, including T1-weighted (T1-w), T2-weighted (T2-w), diffusion-weighted imaging (DWI), and contrast-enhanced T1-weighted (CET1-w). Two distinct models, the All-sequence segmentation model and the T2-fusion segmentation model, were developed. During the implementation of our DL models, all regions of interest (ROIs) in the training set were coarse labeled, and ROIs in the test set were fine labeled. Dice score and intersection over union (IoU) were used to evaluate model performance.</p><p><strong>Results: </strong>The 2.5D MobileNetV2 architecture demonstrated improved segmentation performance compared to 2D and 3D U-Net models, with a Dice score of 0.741 and an IoU of 0.615. The All-sequence model, which was trained using a fusion of four MRI sequences (T1-w, CET1-w, T2-w, and DWI), exhibited superior performance with Dice scores of 0.659 for T1-w, 0.763 for CET1-w, 0.819 for T2-w, and 0.723 for DWI as inputs. In contrast, the T2-fusion segmentation model, which used T2-w and CET1-w sequences as inputs, achieved a Dice score of 0.833 and an IoU value of 0.719.</p><p><strong>Conclusions: </strong>In this study, we developed a practical DL framework for PST segmentation via multi-sequence MRI, which reduces the dependence on data annotation. These models offer solutions for various clinical scenarios and have significant potential for wide-ranging applications.</p>","PeriodicalId":9548,"journal":{"name":"Cancer Imaging","volume":"25 1","pages":"34"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40644-025-00850-8","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Accurate segmentation of pelvic and sacral tumors (PSTs) in multi-sequence magnetic resonance imaging (MRI) is essential for effective treatment and surgical planning.

Purpose: To develop a deep learning (DL) framework for efficient segmentation of PSTs from multi-sequence MRI.

Materials and methods: This study included a total of 616 patients with pathologically confirmed PSTs between April 2011 to May 2022. We proposed a practical DL framework that integrates a 2.5D U-net and MobileNetV2 for automatic PST segmentation with a fast annotation strategy across multiple MRI sequences, including T1-weighted (T1-w), T2-weighted (T2-w), diffusion-weighted imaging (DWI), and contrast-enhanced T1-weighted (CET1-w). Two distinct models, the All-sequence segmentation model and the T2-fusion segmentation model, were developed. During the implementation of our DL models, all regions of interest (ROIs) in the training set were coarse labeled, and ROIs in the test set were fine labeled. Dice score and intersection over union (IoU) were used to evaluate model performance.

Results: The 2.5D MobileNetV2 architecture demonstrated improved segmentation performance compared to 2D and 3D U-Net models, with a Dice score of 0.741 and an IoU of 0.615. The All-sequence model, which was trained using a fusion of four MRI sequences (T1-w, CET1-w, T2-w, and DWI), exhibited superior performance with Dice scores of 0.659 for T1-w, 0.763 for CET1-w, 0.819 for T2-w, and 0.723 for DWI as inputs. In contrast, the T2-fusion segmentation model, which used T2-w and CET1-w sequences as inputs, achieved a Dice score of 0.833 and an IoU value of 0.719.

Conclusions: In this study, we developed a practical DL framework for PST segmentation via multi-sequence MRI, which reduces the dependence on data annotation. These models offer solutions for various clinical scenarios and have significant potential for wide-ranging applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Cancer Imaging
Cancer Imaging ONCOLOGY-RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
CiteScore
7.00
自引率
0.00%
发文量
66
审稿时长
>12 weeks
期刊介绍: Cancer Imaging is an open access, peer-reviewed journal publishing original articles, reviews and editorials written by expert international radiologists working in oncology. The journal encompasses CT, MR, PET, ultrasound, radionuclide and multimodal imaging in all kinds of malignant tumours, plus new developments, techniques and innovations. Topics of interest include: Breast Imaging Chest Complications of treatment Ear, Nose & Throat Gastrointestinal Hepatobiliary & Pancreatic Imaging biomarkers Interventional Lymphoma Measurement of tumour response Molecular functional imaging Musculoskeletal Neuro oncology Nuclear Medicine Paediatric.
期刊最新文献
Intratumoral and peritumoral CT radiomics in predicting anaplastic lymphoma kinase mutations and survival in patients with lung adenocarcinoma: a multicenter study. Development and evaluation of a deep learning framework for pelvic and sacral tumor segmentation from multi-sequence MRI: a retrospective study. An interpretable machine learning model based on computed tomography radiomics for predicting programmed death ligand 1 expression status in gastric cancer. Change in diffusion weighted imaging after induction chemotherapy outperforms RECIST guideline for long-term outcome prediction in advanced nasopharyngeal carcinoma. Robust vs. Non-robust radiomic features: the quest for optimal machine learning models using phantom and clinical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1