Courtney J Tremlett, Jack Stubbs, William S Stuart, Patrick D Shaw Stewart, Jonathan West, Allen M Orville, Ivo Tews, Nicholas J Harmer
{"title":"Small but mighty: the power of microcrystals in structural biology.","authors":"Courtney J Tremlett, Jack Stubbs, William S Stuart, Patrick D Shaw Stewart, Jonathan West, Allen M Orville, Ivo Tews, Nicholas J Harmer","doi":"10.1107/S2052252525001484","DOIUrl":null,"url":null,"abstract":"<p><p>Advancements in macromolecular crystallography, driven by improved sources and cryocooling techniques, have enabled the use of increasingly smaller crystals for structure determination, with microfocus beamlines now widely accessible. Initially developed for challenging samples, these techniques have culminated in advanced beamlines such as VMXm. Here, an in vacuo sample environment improves the signal-to-noise ratio in X-ray diffraction experiments, and thus enables the use of submicrometre crystals. The advancement of techniques such as microcrystal electron diffraction (MicroED) for atomic-level insights into charged states and hydrogen positions, along with room-temperature crystallography to observe physiological states via serial crystallography, has driven a resurgence in the use of microcrystals. Reproducibly preparing small crystals, especially from samples that typically yield larger crystals, requires considerable effort, as no one singular approach guarantees optimal crystals for every technique. This review discusses methods for generating such small crystals, including mechanical crushing and batch crystallization with seeding, and evaluates their compatibility with microcrystal data-collection modalities. Additionally, we examine sample-delivery methods, which are crucial for selecting appropriate crystallization strategies. Establishing reliable protocols for sample preparation and delivery opens new avenues for macromolecular crystallography, particularly in the rapidly progressing field of time-resolved crystallography.</p>","PeriodicalId":14775,"journal":{"name":"IUCrJ","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IUCrJ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1107/S2052252525001484","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Advancements in macromolecular crystallography, driven by improved sources and cryocooling techniques, have enabled the use of increasingly smaller crystals for structure determination, with microfocus beamlines now widely accessible. Initially developed for challenging samples, these techniques have culminated in advanced beamlines such as VMXm. Here, an in vacuo sample environment improves the signal-to-noise ratio in X-ray diffraction experiments, and thus enables the use of submicrometre crystals. The advancement of techniques such as microcrystal electron diffraction (MicroED) for atomic-level insights into charged states and hydrogen positions, along with room-temperature crystallography to observe physiological states via serial crystallography, has driven a resurgence in the use of microcrystals. Reproducibly preparing small crystals, especially from samples that typically yield larger crystals, requires considerable effort, as no one singular approach guarantees optimal crystals for every technique. This review discusses methods for generating such small crystals, including mechanical crushing and batch crystallization with seeding, and evaluates their compatibility with microcrystal data-collection modalities. Additionally, we examine sample-delivery methods, which are crucial for selecting appropriate crystallization strategies. Establishing reliable protocols for sample preparation and delivery opens new avenues for macromolecular crystallography, particularly in the rapidly progressing field of time-resolved crystallography.
期刊介绍:
IUCrJ is a new fully open-access peer-reviewed journal from the International Union of Crystallography (IUCr).
The journal will publish high-profile articles on all aspects of the sciences and technologies supported by the IUCr via its commissions, including emerging fields where structural results underpin the science reported in the article. Our aim is to make IUCrJ the natural home for high-quality structural science results. Chemists, biologists, physicists and material scientists will be actively encouraged to report their structural studies in IUCrJ.