Further varieties of ancient endogenous retrovirus in human DNA.

IF 4.7 2区 生物学 Q1 GENETICS & HEREDITY Mobile DNA Pub Date : 2025-03-13 DOI:10.1186/s13100-025-00348-x
Martin C Frith
{"title":"Further varieties of ancient endogenous retrovirus in human DNA.","authors":"Martin C Frith","doi":"10.1186/s13100-025-00348-x","DOIUrl":null,"url":null,"abstract":"<p><p>A retrovirus inserts its genome into the DNA of a cell, occasionally a germ-line cell that gives rise to descendants of the host organism: it is then called an endogenous retrovirus (ERV). The human genome contains relics from many kinds of ancient ERV. Some relics contributed new genes and regulatory elements. This study finds further kinds of ancient ERV, in the thoroughly-studied human genome version hg38: ERV-Hako, ERV-Saru, ERV-Hou, ERV-Han, and ERV-Goku. It also finds many relics of ERV-V, previously known from just two copies on chromosome 19 with placental genes. It finds a type of ERV flanked by MER41E long terminal repeats (LTRs), with surprisingly little similarity to the known MER41 ERV. ERV-Hako has subtypes that contain sequence from host genes SUSD6 and SPHKAP: the SUSD6 variant was transferred between catarrhine and platyrrhine primates. A retrovirus uses tRNA to prime reverse transcription: Hako is the only human ERV relic that used tRNA-Trp (tryptophan, symbol W), and HERV-W is misnamed because it used tRNA-Arg, based on the Genomic tRNA Database. One ERV-Saru LTR is the previously-described enhancer of AIM2 in innate immunity. This study contributes to understanding primate ERV history, but also shows that related ERVs can have drastic differences, challenging the goal of clearly annotating all ERV relics in genomes.</p>","PeriodicalId":18854,"journal":{"name":"Mobile DNA","volume":"16 1","pages":"11"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11905727/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mobile DNA","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13100-025-00348-x","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

A retrovirus inserts its genome into the DNA of a cell, occasionally a germ-line cell that gives rise to descendants of the host organism: it is then called an endogenous retrovirus (ERV). The human genome contains relics from many kinds of ancient ERV. Some relics contributed new genes and regulatory elements. This study finds further kinds of ancient ERV, in the thoroughly-studied human genome version hg38: ERV-Hako, ERV-Saru, ERV-Hou, ERV-Han, and ERV-Goku. It also finds many relics of ERV-V, previously known from just two copies on chromosome 19 with placental genes. It finds a type of ERV flanked by MER41E long terminal repeats (LTRs), with surprisingly little similarity to the known MER41 ERV. ERV-Hako has subtypes that contain sequence from host genes SUSD6 and SPHKAP: the SUSD6 variant was transferred between catarrhine and platyrrhine primates. A retrovirus uses tRNA to prime reverse transcription: Hako is the only human ERV relic that used tRNA-Trp (tryptophan, symbol W), and HERV-W is misnamed because it used tRNA-Arg, based on the Genomic tRNA Database. One ERV-Saru LTR is the previously-described enhancer of AIM2 in innate immunity. This study contributes to understanding primate ERV history, but also shows that related ERVs can have drastic differences, challenging the goal of clearly annotating all ERV relics in genomes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Mobile DNA
Mobile DNA GENETICS & HEREDITY-
CiteScore
8.20
自引率
6.10%
发文量
26
审稿时长
11 weeks
期刊介绍: Mobile DNA is an online, peer-reviewed, open access journal that publishes articles providing novel insights into DNA rearrangements in all organisms, ranging from transposition and other types of recombination mechanisms to patterns and processes of mobile element and host genome evolution. In addition, the journal will consider articles on the utility of mobile genetic elements in biotechnological methods and protocols.
期刊最新文献
Association of a 7.9 kb Endogenous Retrovirus Insertion in Intron 1 of CD36 with Obesity and Fat Measurements in Sheep. Further varieties of ancient endogenous retrovirus in human DNA. Tandem LTR-retrotransposon structures are common and highly polymorphic in plant genomes. Marine vs. terrestrial: links between the environment and the diversity of Copia retrotransposon in metazoans. Transposable elements in genomic architecture of Monilinia fungal phytopathogens and TE-driven DMI-resistance adaptation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1