{"title":"Further varieties of ancient endogenous retrovirus in human DNA.","authors":"Martin C Frith","doi":"10.1186/s13100-025-00348-x","DOIUrl":null,"url":null,"abstract":"<p><p>A retrovirus inserts its genome into the DNA of a cell, occasionally a germ-line cell that gives rise to descendants of the host organism: it is then called an endogenous retrovirus (ERV). The human genome contains relics from many kinds of ancient ERV. Some relics contributed new genes and regulatory elements. This study finds further kinds of ancient ERV, in the thoroughly-studied human genome version hg38: ERV-Hako, ERV-Saru, ERV-Hou, ERV-Han, and ERV-Goku. It also finds many relics of ERV-V, previously known from just two copies on chromosome 19 with placental genes. It finds a type of ERV flanked by MER41E long terminal repeats (LTRs), with surprisingly little similarity to the known MER41 ERV. ERV-Hako has subtypes that contain sequence from host genes SUSD6 and SPHKAP: the SUSD6 variant was transferred between catarrhine and platyrrhine primates. A retrovirus uses tRNA to prime reverse transcription: Hako is the only human ERV relic that used tRNA-Trp (tryptophan, symbol W), and HERV-W is misnamed because it used tRNA-Arg, based on the Genomic tRNA Database. One ERV-Saru LTR is the previously-described enhancer of AIM2 in innate immunity. This study contributes to understanding primate ERV history, but also shows that related ERVs can have drastic differences, challenging the goal of clearly annotating all ERV relics in genomes.</p>","PeriodicalId":18854,"journal":{"name":"Mobile DNA","volume":"16 1","pages":"11"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11905727/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mobile DNA","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13100-025-00348-x","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
A retrovirus inserts its genome into the DNA of a cell, occasionally a germ-line cell that gives rise to descendants of the host organism: it is then called an endogenous retrovirus (ERV). The human genome contains relics from many kinds of ancient ERV. Some relics contributed new genes and regulatory elements. This study finds further kinds of ancient ERV, in the thoroughly-studied human genome version hg38: ERV-Hako, ERV-Saru, ERV-Hou, ERV-Han, and ERV-Goku. It also finds many relics of ERV-V, previously known from just two copies on chromosome 19 with placental genes. It finds a type of ERV flanked by MER41E long terminal repeats (LTRs), with surprisingly little similarity to the known MER41 ERV. ERV-Hako has subtypes that contain sequence from host genes SUSD6 and SPHKAP: the SUSD6 variant was transferred between catarrhine and platyrrhine primates. A retrovirus uses tRNA to prime reverse transcription: Hako is the only human ERV relic that used tRNA-Trp (tryptophan, symbol W), and HERV-W is misnamed because it used tRNA-Arg, based on the Genomic tRNA Database. One ERV-Saru LTR is the previously-described enhancer of AIM2 in innate immunity. This study contributes to understanding primate ERV history, but also shows that related ERVs can have drastic differences, challenging the goal of clearly annotating all ERV relics in genomes.
期刊介绍:
Mobile DNA is an online, peer-reviewed, open access journal that publishes articles providing novel insights into DNA rearrangements in all organisms, ranging from transposition and other types of recombination mechanisms to patterns and processes of mobile element and host genome evolution. In addition, the journal will consider articles on the utility of mobile genetic elements in biotechnological methods and protocols.