{"title":"Soil Microbial Recovery to the Rubber Tree Replanting Process in Ivory Coast.","authors":"Aymard Kouakou Kouakou, Paul Collart, Thibaut Perron, Yeo Kolo, Frédéric Gay, Alain Brauman, Caroline Brunel","doi":"10.1007/s00248-025-02506-3","DOIUrl":null,"url":null,"abstract":"<p><p>The resistance and resilience of soil microbial communities to an environmental disturbance are poorly documented, due to the lack on onfield diachronic experiments, limiting our ability to design adapted agroecological practices. This is especially true in rubber plantations, one of the most planted tree in tropical areas. We aimed to understand (1) how soil disturbances occurring during the rubber replanting phase affect the soil microbiome, (2) how agricultural practices combining legumes cover crops and tree logging residues shape community resilience and (3) how microbial responses vary across different edaphic contexts. In two plantations with distinct soil properties in Ivory Coast, soil microbial communities were surveyed every 6 months for 24 months after soil perturbation. Community structure, functioning and networks were described based on a 16S/18S rRNA gene investigation. Prokaryotes were generally more resistant to soil perturbation than microeukaryote communities. Prokaryotic resilience dynamics were faster than those of microeukaryotes, the latter being deeply modulated by cover treatments. These specific dynamics were exacerbated in the sandy site. Co-occurrence network modelling provided useful insights into microbial resilience trajectories. We argue that this tool should be more widely used to describe microbial community dynamics. Practices involving a combination of logging residues and legume cover crops have shown beneficial effects on the community resilience in the sandy site and appears as promising agroecological practices. However, the major influence of soil texture warns of the need to consider pedological context when designing pertinent agroecological practices.</p>","PeriodicalId":18708,"journal":{"name":"Microbial Ecology","volume":"88 1","pages":"13"},"PeriodicalIF":3.3000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00248-025-02506-3","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The resistance and resilience of soil microbial communities to an environmental disturbance are poorly documented, due to the lack on onfield diachronic experiments, limiting our ability to design adapted agroecological practices. This is especially true in rubber plantations, one of the most planted tree in tropical areas. We aimed to understand (1) how soil disturbances occurring during the rubber replanting phase affect the soil microbiome, (2) how agricultural practices combining legumes cover crops and tree logging residues shape community resilience and (3) how microbial responses vary across different edaphic contexts. In two plantations with distinct soil properties in Ivory Coast, soil microbial communities were surveyed every 6 months for 24 months after soil perturbation. Community structure, functioning and networks were described based on a 16S/18S rRNA gene investigation. Prokaryotes were generally more resistant to soil perturbation than microeukaryote communities. Prokaryotic resilience dynamics were faster than those of microeukaryotes, the latter being deeply modulated by cover treatments. These specific dynamics were exacerbated in the sandy site. Co-occurrence network modelling provided useful insights into microbial resilience trajectories. We argue that this tool should be more widely used to describe microbial community dynamics. Practices involving a combination of logging residues and legume cover crops have shown beneficial effects on the community resilience in the sandy site and appears as promising agroecological practices. However, the major influence of soil texture warns of the need to consider pedological context when designing pertinent agroecological practices.
期刊介绍:
The journal Microbial Ecology was founded more than 50 years ago by Dr. Ralph Mitchell, Gordon McKay Professor of Applied Biology at Harvard University in Cambridge, MA. The journal has evolved to become a premier location for the presentation of manuscripts that represent advances in the field of microbial ecology. The journal has become a dedicated international forum for the presentation of high-quality scientific investigations of how microorganisms interact with their environment, with each other and with their hosts. Microbial Ecology offers articles of original research in full paper and note formats, as well as brief reviews and topical position papers.