A sequence context-based approach for classifying tumor structural variants without paired normal samples.

IF 4.3 Q1 BIOCHEMICAL RESEARCH METHODS Cell Reports Methods Pub Date : 2025-03-24 Epub Date: 2025-03-12 DOI:10.1016/j.crmeth.2025.100991
Wolu Chukwu, Siyun Lee, Alexander Crane, Shu Zhang, Sophie Webster, Oumayma Dakhama, Ipsa Mittra, Carlos Rauert, Marcin Imielinski, Rameen Beroukhim, Frank Dubois, Simona Dalin
{"title":"A sequence context-based approach for classifying tumor structural variants without paired normal samples.","authors":"Wolu Chukwu, Siyun Lee, Alexander Crane, Shu Zhang, Sophie Webster, Oumayma Dakhama, Ipsa Mittra, Carlos Rauert, Marcin Imielinski, Rameen Beroukhim, Frank Dubois, Simona Dalin","doi":"10.1016/j.crmeth.2025.100991","DOIUrl":null,"url":null,"abstract":"<p><p>Although several recent studies have characterized structural variants (SVs) in germline and cancer genomes independently, the genomic contexts of these SVs have not been comprehensively compared. We examined similarities and differences between 2 million germline and 115 thousand tumor SVs from a cohort of 963 patients from The Cancer Genome Atlas. We found significant differences in features related to their genomic sequences and localization that suggest differences between SV-generating processes and selective pressures. For example, our results show that features linked to transposon-mediated processes are associated with germline SVs, while somatic SVs more frequently show features characteristic of chromoanagenesis. These genomic differences enabled us to develop a classifier-the Germline and Tumor Structural Variant or \"the great GaTSV\" -that accurately distinguishes between germline and cancer SVs in tumor samples that lack a matched normal sample.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":" ","pages":"100991"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.crmeth.2025.100991","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Although several recent studies have characterized structural variants (SVs) in germline and cancer genomes independently, the genomic contexts of these SVs have not been comprehensively compared. We examined similarities and differences between 2 million germline and 115 thousand tumor SVs from a cohort of 963 patients from The Cancer Genome Atlas. We found significant differences in features related to their genomic sequences and localization that suggest differences between SV-generating processes and selective pressures. For example, our results show that features linked to transposon-mediated processes are associated with germline SVs, while somatic SVs more frequently show features characteristic of chromoanagenesis. These genomic differences enabled us to develop a classifier-the Germline and Tumor Structural Variant or "the great GaTSV" -that accurately distinguishes between germline and cancer SVs in tumor samples that lack a matched normal sample.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
尽管最近有几项研究对种系基因组和癌症基因组中的结构变异(SV)进行了独立鉴定,但这些 SV 的基因组背景尚未得到全面比较。我们研究了来自《癌症基因组图谱》(The Cancer Genome Atlas)963 例患者队列的 200 万个种系和 11.5 万个肿瘤 SV 之间的异同。我们发现,与基因组序列和定位相关的特征存在明显差异,这表明 SV 的产生过程和选择压力存在差异。例如,我们的研究结果表明,与转座子介导过程相关的特征与种系SV有关,而体细胞SV则更多地表现出染色体遗传的特征。这些基因组差异使我们能够开发出一种分类器--种系和肿瘤结构变异或 "伟大的 GaTSV",它能在缺乏匹配正常样本的肿瘤样本中准确区分种系和癌症 SV。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
相关文献
Detection of coal gangue based on spectral technology and enhanced lightweight YOLOv7-tiny
IF 2.1 4区 工程技术International Journal of Coal Preparation and UtilizationPub Date : 2024-01-07 DOI: 10.1080/19392699.2023.2301314
Pengcheng Yan, Wenchang Wang, Guodong Li, Yuting Zhao, Jingbao Wang, Ziming Wen
Research on Coal and Gangue Recognition Based on the Improved YOLOv7-Tiny Target Detection Algorithm
IF 3.9 3区 综合性期刊SensorsPub Date : 2024-01-11 DOI: 10.3390/s24020456
Yiping Sui, Lei Zhang, Zhipeng Sun, Weixun Yi, Meng Wang
Detection of coal gangue based on MSRCR algorithm and improved lightweight YOLOv8n
IF 2.1 4区 工程技术International Journal of Coal Preparation and UtilizationPub Date : 2024-09-01 DOI: 10.1080/19392699.2024.2398522
Yan Hong, Ruixian Pan, Jingming Su, Rong Pang
来源期刊
Cell Reports Methods
Cell Reports Methods Chemistry (General), Biochemistry, Genetics and Molecular Biology (General), Immunology and Microbiology (General)
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
111 days
期刊最新文献
A sequence context-based approach for classifying tumor structural variants without paired normal samples. A comprehensive and standardized pipeline for automated profiling of higher cognition in mice. Sequential co-assembly reduces computational resources and errors in metagenome-assembled genomes. AVID enables sensitive and accurate viral integration detection across human cancers. Comprehensive assessment of computational methods for cancer immunoediting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1