Two TAL effectors of Xanthomonas citri promote pustule formation by directly repressing the expression of GRAS transcription factor in citrus.

IF 10.6 Q1 HORTICULTURE Molecular Horticulture Pub Date : 2025-03-14 DOI:10.1186/s43897-024-00131-1
Yichao Yan, Xiaomei Tang, Zhongfeng Zhu, Ke Yin, Yikun Zhang, Zhengyin Xu, Qiang Xu, Lifang Zou, Gongyou Chen
{"title":"Two TAL effectors of Xanthomonas citri promote pustule formation by directly repressing the expression of GRAS transcription factor in citrus.","authors":"Yichao Yan, Xiaomei Tang, Zhongfeng Zhu, Ke Yin, Yikun Zhang, Zhengyin Xu, Qiang Xu, Lifang Zou, Gongyou Chen","doi":"10.1186/s43897-024-00131-1","DOIUrl":null,"url":null,"abstract":"<p><p>Citrus bacterial canker (CBC), caused by Xanthomonas citri subsp. citri (Xcc), poses a significant threat to the citrus industry. Xcc employs the transcription activator-like effector (TALE) PthA4 to target the major susceptibility (S) gene CsLOB1 in citrus, promoting host susceptibility to bacterial canker. However, the contribution of other Xcc TALEs, aside from PthA4, to virulence remains underexplored. In this study, we characterized two PthA1 variants, designated PthA5 and PthA6, which facilitate Xcc infection in susceptible citrus species by promoting the formation of hypertrophy and hyperplasia symptoms. Both PthA5 and PthA6 bind directly to effector-binding elements (EBEs) in the promoter of CsGRAS9, suppressing its expression. CsGRAS9 negatively regulates Xcc growth in citrus and contributes to CBC resistance. Notably, natural variations in the EBEs of the FhGRAS9 promoter, a homolog of CsGRAS9 in Hong Kong kumquat, prevent Xcc from affecting FhGRAS9 expression. Using the PTG/Cas9 system, we generated proCsGRAS9-edited sweet orange lines #18-2 and #23, which contain 86-bp and 62-bp deletions in the EBE regions of the CsGRAS9 promoter. These mutant lines showed enhanced CsGRAS9 expression and increased resistance to CBC during Xcc infection. Several GA-related genes and CsTAC1, regulated by CsGRAS9, were also identified. This is the first report that TALEs act as repressors of a resistance gene to confer host susceptibility.</p>","PeriodicalId":29970,"journal":{"name":"Molecular Horticulture","volume":"5 1","pages":"30"},"PeriodicalIF":10.6000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Horticulture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s43897-024-00131-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HORTICULTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Citrus bacterial canker (CBC), caused by Xanthomonas citri subsp. citri (Xcc), poses a significant threat to the citrus industry. Xcc employs the transcription activator-like effector (TALE) PthA4 to target the major susceptibility (S) gene CsLOB1 in citrus, promoting host susceptibility to bacterial canker. However, the contribution of other Xcc TALEs, aside from PthA4, to virulence remains underexplored. In this study, we characterized two PthA1 variants, designated PthA5 and PthA6, which facilitate Xcc infection in susceptible citrus species by promoting the formation of hypertrophy and hyperplasia symptoms. Both PthA5 and PthA6 bind directly to effector-binding elements (EBEs) in the promoter of CsGRAS9, suppressing its expression. CsGRAS9 negatively regulates Xcc growth in citrus and contributes to CBC resistance. Notably, natural variations in the EBEs of the FhGRAS9 promoter, a homolog of CsGRAS9 in Hong Kong kumquat, prevent Xcc from affecting FhGRAS9 expression. Using the PTG/Cas9 system, we generated proCsGRAS9-edited sweet orange lines #18-2 and #23, which contain 86-bp and 62-bp deletions in the EBE regions of the CsGRAS9 promoter. These mutant lines showed enhanced CsGRAS9 expression and increased resistance to CBC during Xcc infection. Several GA-related genes and CsTAC1, regulated by CsGRAS9, were also identified. This is the first report that TALEs act as repressors of a resistance gene to confer host susceptibility.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Horticulture
Molecular Horticulture horticultural research-
CiteScore
8.00
自引率
0.00%
发文量
24
审稿时长
12 weeks
期刊介绍: Aims Molecular Horticulture aims to publish research and review articles that significantly advance our knowledge in understanding how the horticultural crops or their parts operate mechanistically. Articles should have profound impacts not only in terms of high citation number or the like, but more importantly on the direction of the horticultural research field. Scope Molecular Horticulture publishes original Research Articles, Letters, and Reviews on novel discoveries on the following, but not limited to, aspects of horticultural plants (including medicinal plants): ▪ Developmental and evolutionary biology ▪ Physiology, biochemistry and cell biology ▪ Plant-microbe and plant-environment interactions ▪ Genetics and epigenetics ▪ Molecular breeding and biotechnology ▪ Secondary metabolism and synthetic biology ▪ Multi-omics dealing with data sets of genome, transcriptome, proteome, metabolome, epigenome and/or microbiome. The journal also welcomes research articles using model plants that reveal mechanisms and/or principles readily applicable to horticultural plants, translational research articles involving application of basic knowledge (including those of model plants) to the horticultural crops, novel Methods and Resources of broad interest. In addition, the journal publishes Editorial, News and View, and Commentary and Perspective on current, significant events and topics in global horticultural fields with international interests.
期刊最新文献
Two TAL effectors of Xanthomonas citri promote pustule formation by directly repressing the expression of GRAS transcription factor in citrus. Climate change affects the suitability of Chinese cherry (Prunus pseudocerasus Lindl.) in China. A novel mode of WRKY1 regulating PR1-mediated immune balance to defend against powdery mildew in apple. DNA methylation dynamics in male germline development in Brassica Rapa. CmHRE2L-CmACS6 transcriptional cascade negatively regulates waterlogging tolerance in Chrysanthemum.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1