Microplastics and tetracycline affecting apoptosis, enzyme activities and metabolism processes in the Aurelia aurita polyps: insights into combined pollutant effects
Xuandong Wu, Xiaoyong Zhang, Hongze Liao, Jie Guo, Zhenhua Ma, Zhilu Fu
{"title":"Microplastics and tetracycline affecting apoptosis, enzyme activities and metabolism processes in the Aurelia aurita polyps: insights into combined pollutant effects","authors":"Xuandong Wu, Xiaoyong Zhang, Hongze Liao, Jie Guo, Zhenhua Ma, Zhilu Fu","doi":"10.3389/fmars.2025.1545131","DOIUrl":null,"url":null,"abstract":"IntroductionMicroplastics (MPs) and tetracycline (TC) are pervasive contaminants in marine ecosystems, yet their combined effects on benthic organisms, such as <jats:italic>Aurelia aurita</jats:italic> polyps, remain poorly understood. This study investigates the mechanisms of cellular apoptosis, oxidative stress, and metabolic responses induced by single and combined exposures to MPs and TC.MethodsThree experimental phases were conducted: (1) A 7-day exposure to MPs (1 mg/L) and TC (5 mg/L) to assess apoptosis via TUNEL assay; (2) Short-term high-concentration exposure (MPs: 10 mg/L, TC: 5 mg/L) for 72 hours, followed by a 288-hour recovery period, with antioxidant indicators (CAT, GSH, SOD, MDA, etc.) measured at intervals; (3) Long-term exposure (185 days) to environmentally relevant concentrations of MPs (0–1 mg/L) and TC (0–5 mg/L), with metabolomic profiling via LC-MS and pathway analysis. Polyp cultures were maintained under controlled conditions, and statistical analyses included two-way ANOVA and multivariate models (PCA, OPLS-DA).ResultsThe TUNEL assay revealed significantly higher apoptosis rates in the MPs+TC group compared to controls or single-pollutant groups (<jats:italic>P</jats:italic> &lt; 0.05). Antioxidant capacity tests indicated persistent oxidative damage in the MPs group even after 288 hours of recovery. Metabolomics identified distinct physiological strategies for MPs and TC, with altered pathways (e.g., ABC transporters, protein digestion) and disrupted metabolites (antioxidants, neurotransmitters). Notably, TC exhibited non-linear toxicity, with high concentrations not consistently exacerbating harm.DiscussionCombined exposure to MPs and TC induced synergistic stress in <jats:italic>Aurelia aurita</jats:italic> polyps, elevating apoptosis and causing irreversible oxidative damage (e.g., sustained T-AOC decline, MDA accumulation). TC paradoxically mitigated oxidative stress in co-exposure groups, likely via antibacterial effects. Long-term exposure disrupted metabolic pathways (e.g., ABC transporters, arachidonic acid) and neurotransmitter levels, impairing stress resilience and intercellular communication. MPs also altered retinoic acid and indole derivatives, potentially interfering with life-history transitions. While <jats:italic>A. aurita</jats:italic> exhibited tolerance, persistent damage underscores risks for less resilient benthic species. These findings highlight the need to address cumulative ecological impacts of marine pollutants through enhanced regulation and mechanistic studies.","PeriodicalId":12479,"journal":{"name":"Frontiers in Marine Science","volume":"23 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Marine Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fmars.2025.1545131","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
IntroductionMicroplastics (MPs) and tetracycline (TC) are pervasive contaminants in marine ecosystems, yet their combined effects on benthic organisms, such as Aurelia aurita polyps, remain poorly understood. This study investigates the mechanisms of cellular apoptosis, oxidative stress, and metabolic responses induced by single and combined exposures to MPs and TC.MethodsThree experimental phases were conducted: (1) A 7-day exposure to MPs (1 mg/L) and TC (5 mg/L) to assess apoptosis via TUNEL assay; (2) Short-term high-concentration exposure (MPs: 10 mg/L, TC: 5 mg/L) for 72 hours, followed by a 288-hour recovery period, with antioxidant indicators (CAT, GSH, SOD, MDA, etc.) measured at intervals; (3) Long-term exposure (185 days) to environmentally relevant concentrations of MPs (0–1 mg/L) and TC (0–5 mg/L), with metabolomic profiling via LC-MS and pathway analysis. Polyp cultures were maintained under controlled conditions, and statistical analyses included two-way ANOVA and multivariate models (PCA, OPLS-DA).ResultsThe TUNEL assay revealed significantly higher apoptosis rates in the MPs+TC group compared to controls or single-pollutant groups (P < 0.05). Antioxidant capacity tests indicated persistent oxidative damage in the MPs group even after 288 hours of recovery. Metabolomics identified distinct physiological strategies for MPs and TC, with altered pathways (e.g., ABC transporters, protein digestion) and disrupted metabolites (antioxidants, neurotransmitters). Notably, TC exhibited non-linear toxicity, with high concentrations not consistently exacerbating harm.DiscussionCombined exposure to MPs and TC induced synergistic stress in Aurelia aurita polyps, elevating apoptosis and causing irreversible oxidative damage (e.g., sustained T-AOC decline, MDA accumulation). TC paradoxically mitigated oxidative stress in co-exposure groups, likely via antibacterial effects. Long-term exposure disrupted metabolic pathways (e.g., ABC transporters, arachidonic acid) and neurotransmitter levels, impairing stress resilience and intercellular communication. MPs also altered retinoic acid and indole derivatives, potentially interfering with life-history transitions. While A. aurita exhibited tolerance, persistent damage underscores risks for less resilient benthic species. These findings highlight the need to address cumulative ecological impacts of marine pollutants through enhanced regulation and mechanistic studies.
期刊介绍:
Frontiers in Marine Science publishes rigorously peer-reviewed research that advances our understanding of all aspects of the environment, biology, ecosystem functioning and human interactions with the oceans. Field Chief Editor Carlos M. Duarte at King Abdullah University of Science and Technology Thuwal is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, policy makers and the public worldwide.
With the human population predicted to reach 9 billion people by 2050, it is clear that traditional land resources will not suffice to meet the demand for food or energy, required to support high-quality livelihoods. As a result, the oceans are emerging as a source of untapped assets, with new innovative industries, such as aquaculture, marine biotechnology, marine energy and deep-sea mining growing rapidly under a new era characterized by rapid growth of a blue, ocean-based economy. The sustainability of the blue economy is closely dependent on our knowledge about how to mitigate the impacts of the multiple pressures on the ocean ecosystem associated with the increased scale and diversification of industry operations in the ocean and global human pressures on the environment. Therefore, Frontiers in Marine Science particularly welcomes the communication of research outcomes addressing ocean-based solutions for the emerging challenges, including improved forecasting and observational capacities, understanding biodiversity and ecosystem problems, locally and globally, effective management strategies to maintain ocean health, and an improved capacity to sustainably derive resources from the oceans.