{"title":"High-moisture texturization of Antarctic krill (Euphausia superba) meat-based hybrid protein: The synergistic effect of wheat gluten and pea protein","authors":"Zengyan Yu, Jing Yu, Lei Wang, Jinxiu Shi, Songgang Xia, Yong Xue, Ningyang Li, Changhu Xue","doi":"10.1016/j.foodchem.2025.143882","DOIUrl":null,"url":null,"abstract":"This study utilized Antarctic krill (AK) meat as the primary substrate to construct a hybrid protein system by adjusting the proportions of wheat gluten (WG) and pea protein (PP). Further, it investigated the effects of different components on the hybrid protein extrudates (HPE). Results demonstrate that an optimal proportion (W20P5) yields the highest fibrous degree, accompanied by a peak in disulfide bond content. Besides, WG forms a stable three-dimensional framework during extrusion, closely binding different components. Increasing the PP content initially decreases and later increases the density and thermal stability of the HPE. Thus, low PP possibly interferes with the cross-linking between WG and AK myofibrillar proteins, while excessive PP leads to structural disorder and crystal size fluctuations. In summary, this study reveals the effects of WG and PP on the AK meat-based hybrid protein systems in high-moisture extrusion, offering new insights into the construction of hybrid protein systems.","PeriodicalId":318,"journal":{"name":"Food Chemistry","volume":"57 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.foodchem.2025.143882","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This study utilized Antarctic krill (AK) meat as the primary substrate to construct a hybrid protein system by adjusting the proportions of wheat gluten (WG) and pea protein (PP). Further, it investigated the effects of different components on the hybrid protein extrudates (HPE). Results demonstrate that an optimal proportion (W20P5) yields the highest fibrous degree, accompanied by a peak in disulfide bond content. Besides, WG forms a stable three-dimensional framework during extrusion, closely binding different components. Increasing the PP content initially decreases and later increases the density and thermal stability of the HPE. Thus, low PP possibly interferes with the cross-linking between WG and AK myofibrillar proteins, while excessive PP leads to structural disorder and crystal size fluctuations. In summary, this study reveals the effects of WG and PP on the AK meat-based hybrid protein systems in high-moisture extrusion, offering new insights into the construction of hybrid protein systems.
期刊介绍:
Food Chemistry publishes original research papers dealing with the advancement of the chemistry and biochemistry of foods or the analytical methods/ approach used. All papers should focus on the novelty of the research carried out.