Qingxue Zhao , Shenwei Wang , Zhengmao Wen , Weifang Zhang , Xiaoxia Duan , Lixin Yi
{"title":"Intense near-infrared electroluminescence properties from ZnO:Yb LED","authors":"Qingxue Zhao , Shenwei Wang , Zhengmao Wen , Weifang Zhang , Xiaoxia Duan , Lixin Yi","doi":"10.1016/j.sse.2025.109102","DOIUrl":null,"url":null,"abstract":"<div><div>Rare-earth (RE) doped zinc oxide electroluminescence is worthy of study due to its pure and sharp luminescence characteristics. In this work, we report ZnO:Yb light-emitting diodes (LED) and test their electroluminescence properties. Through adjusting the concentration of ytterbium doping and optimizing of annealing parameters for ZnO:Yb thin films, the results show that ZnO:Yb light-emitting diodes are capable of generating intense near-infrared emission at 975 nm and 1004 nm. We contend that impact excitation is the predominant mechanism underlying the electroluminescence in ITO/PEDOT:PSS/ZnO:Yb/n-Si light-emitting diodes. These results are considered an effective strategy for rare-earth-doped semiconductor electroluminescence in near-infrared light-emitting diodes.</div></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"226 ","pages":"Article 109102"},"PeriodicalIF":1.4000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid-state Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038110125000474","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Rare-earth (RE) doped zinc oxide electroluminescence is worthy of study due to its pure and sharp luminescence characteristics. In this work, we report ZnO:Yb light-emitting diodes (LED) and test their electroluminescence properties. Through adjusting the concentration of ytterbium doping and optimizing of annealing parameters for ZnO:Yb thin films, the results show that ZnO:Yb light-emitting diodes are capable of generating intense near-infrared emission at 975 nm and 1004 nm. We contend that impact excitation is the predominant mechanism underlying the electroluminescence in ITO/PEDOT:PSS/ZnO:Yb/n-Si light-emitting diodes. These results are considered an effective strategy for rare-earth-doped semiconductor electroluminescence in near-infrared light-emitting diodes.
期刊介绍:
It is the aim of this journal to bring together in one publication outstanding papers reporting new and original work in the following areas: (1) applications of solid-state physics and technology to electronics and optoelectronics, including theory and device design; (2) optical, electrical, morphological characterization techniques and parameter extraction of devices; (3) fabrication of semiconductor devices, and also device-related materials growth, measurement and evaluation; (4) the physics and modeling of submicron and nanoscale microelectronic and optoelectronic devices, including processing, measurement, and performance evaluation; (5) applications of numerical methods to the modeling and simulation of solid-state devices and processes; and (6) nanoscale electronic and optoelectronic devices, photovoltaics, sensors, and MEMS based on semiconductor and alternative electronic materials; (7) synthesis and electrooptical properties of materials for novel devices.