A hybrid single-loop approach combining the target beta-hypersphere sampling and active learning Kriging for reliability-based design optimization

IF 5 1区 工程技术 Q1 ENGINEERING, AEROSPACE Aerospace Science and Technology Pub Date : 2025-03-11 DOI:10.1016/j.ast.2025.110136
Huanhuan Hu, Pan Wang, Haoqi Chang, Rong Yang, Weizhu Yang, Lei Li
{"title":"A hybrid single-loop approach combining the target beta-hypersphere sampling and active learning Kriging for reliability-based design optimization","authors":"Huanhuan Hu,&nbsp;Pan Wang,&nbsp;Haoqi Chang,&nbsp;Rong Yang,&nbsp;Weizhu Yang,&nbsp;Lei Li","doi":"10.1016/j.ast.2025.110136","DOIUrl":null,"url":null,"abstract":"<div><div>In engineering design, system-level requirements typically provide each subsystem with specific target reliability indexes. This makes reliability-based design optimization (RBDO) under the prescribed target reliability index particularly relevant for practical applications. However, solving complex nonlinear RBDO problems often involves nested double-loop optimization, leading to prohibitive computational costs and potential convergence issues. To address these challenges, this study proposes a minimum performance measure-based hybrid single-loop approach (TSPM-AK-HSLA) that integrates target beta-hypersphere sampling and active learning Kriging. First, a novel sampling strategy combining target beta-hypersphere and local enhancement is introduced to accurately identify the minimum performance target point (MPTP) without requiring gradient calculations or iterative search direction adjustments. Second, an identification criterion for the active constraint is incorporated to determine whether the Kriging model needs updating within the local region around the approximate MPTP, thereby focusing sampling efforts for improved efficiency. Finally, an adaptive strategy is employed to implement the hybrid single-loop approach, accelerating convergence while maintaining robustness for nonlinear problems. Comparative analyses with existing methods, along with two numerical MPTP search examples and two nonlinear RBDO examples demonstrate the superior efficiency and accuracy of the proposed approach. The RBDO application for an engineering clamping mechanism of the aircraft engine guides the design.</div></div>","PeriodicalId":50955,"journal":{"name":"Aerospace Science and Technology","volume":"161 ","pages":"Article 110136"},"PeriodicalIF":5.0000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S127096382500207X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

In engineering design, system-level requirements typically provide each subsystem with specific target reliability indexes. This makes reliability-based design optimization (RBDO) under the prescribed target reliability index particularly relevant for practical applications. However, solving complex nonlinear RBDO problems often involves nested double-loop optimization, leading to prohibitive computational costs and potential convergence issues. To address these challenges, this study proposes a minimum performance measure-based hybrid single-loop approach (TSPM-AK-HSLA) that integrates target beta-hypersphere sampling and active learning Kriging. First, a novel sampling strategy combining target beta-hypersphere and local enhancement is introduced to accurately identify the minimum performance target point (MPTP) without requiring gradient calculations or iterative search direction adjustments. Second, an identification criterion for the active constraint is incorporated to determine whether the Kriging model needs updating within the local region around the approximate MPTP, thereby focusing sampling efforts for improved efficiency. Finally, an adaptive strategy is employed to implement the hybrid single-loop approach, accelerating convergence while maintaining robustness for nonlinear problems. Comparative analyses with existing methods, along with two numerical MPTP search examples and two nonlinear RBDO examples demonstrate the superior efficiency and accuracy of the proposed approach. The RBDO application for an engineering clamping mechanism of the aircraft engine guides the design.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Aerospace Science and Technology
Aerospace Science and Technology 工程技术-工程:宇航
CiteScore
10.30
自引率
28.60%
发文量
654
审稿时长
54 days
期刊介绍: Aerospace Science and Technology publishes articles of outstanding scientific quality. Each article is reviewed by two referees. The journal welcomes papers from a wide range of countries. This journal publishes original papers, review articles and short communications related to all fields of aerospace research, fundamental and applied, potential applications of which are clearly related to: • The design and the manufacture of aircraft, helicopters, missiles, launchers and satellites • The control of their environment • The study of various systems they are involved in, as supports or as targets. Authors are invited to submit papers on new advances in the following topics to aerospace applications: • Fluid dynamics • Energetics and propulsion • Materials and structures • Flight mechanics • Navigation, guidance and control • Acoustics • Optics • Electromagnetism and radar • Signal and image processing • Information processing • Data fusion • Decision aid • Human behaviour • Robotics and intelligent systems • Complex system engineering. Etc.
期刊最新文献
A hybrid single-loop approach combining the target beta-hypersphere sampling and active learning Kriging for reliability-based design optimization Editorial Board Dynamic modeling of liquid-filled free-floating space robot and joint trajectory planning with considering liquid positioning Generalized Newton/Jacobian-free/Krylov iteration-based successive convexification for rapid trajectory optimization Iterative BEMT analysis extended to model coaxial rotor aerodynamic performance in hover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1