Jing Yang , Ouya Fang , Hengfeng Jia , Jiacheng Zheng , Yumei Mu , Paolo Cherubini
{"title":"Tree-ring width series of synchronously growing trees' classes effectively optimizes their climatic signal","authors":"Jing Yang , Ouya Fang , Hengfeng Jia , Jiacheng Zheng , Yumei Mu , Paolo Cherubini","doi":"10.1016/j.agrformet.2025.110500","DOIUrl":null,"url":null,"abstract":"<div><div>The high variability in forest responses to climate changes is often due to the different ways in which individual trees transmit climate signals. This raises the problem that tree-ring chronologies sometimes lack a strong explanation for climate variations. This study aims to efficiently optimize the climatic signals from tree rings based on the method of classifying trees according to their synchronous growth.</div><div>Following dendroclimatological methods, we obtained tree-ring data from 190 juniper (<em>Juniperus przewalskii</em>) samples in the Qilian Mountains, northeast of the Qinghai-Tibetan Plateau. To explore the growth-climate relationship, we classified trees into high- and low-synchronous groups based on their synchrony of annual radial growth. We found that the tree growth of those two groups has different responses to climate factors.</div><div>The results showed that the chronology of high-synchronous growth was significantly and positively correlated with precipitation and moisture conditions during the early summer, while the chronology of low-synchronous growth was significantly and positively correlated with winter maximum temperatures. Compared with the regional standard chronology, the classified chronologies enhanced the extraction of climate information.</div><div><em>Synthesis.</em> We utilize the growth inconsistency among individual trees to develop a classification method more effectively selects upstream trees, thereby capturing the key climatic signals embedded in tree radial growth. This approach enables a more precise exploration of the relationship between tree-ring growth and climatic factors, with potentially significant implications for improving the accuracy of future climate reconstructions.</div></div>","PeriodicalId":50839,"journal":{"name":"Agricultural and Forest Meteorology","volume":"366 ","pages":"Article 110500"},"PeriodicalIF":5.6000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural and Forest Meteorology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168192325001200","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
The high variability in forest responses to climate changes is often due to the different ways in which individual trees transmit climate signals. This raises the problem that tree-ring chronologies sometimes lack a strong explanation for climate variations. This study aims to efficiently optimize the climatic signals from tree rings based on the method of classifying trees according to their synchronous growth.
Following dendroclimatological methods, we obtained tree-ring data from 190 juniper (Juniperus przewalskii) samples in the Qilian Mountains, northeast of the Qinghai-Tibetan Plateau. To explore the growth-climate relationship, we classified trees into high- and low-synchronous groups based on their synchrony of annual radial growth. We found that the tree growth of those two groups has different responses to climate factors.
The results showed that the chronology of high-synchronous growth was significantly and positively correlated with precipitation and moisture conditions during the early summer, while the chronology of low-synchronous growth was significantly and positively correlated with winter maximum temperatures. Compared with the regional standard chronology, the classified chronologies enhanced the extraction of climate information.
Synthesis. We utilize the growth inconsistency among individual trees to develop a classification method more effectively selects upstream trees, thereby capturing the key climatic signals embedded in tree radial growth. This approach enables a more precise exploration of the relationship between tree-ring growth and climatic factors, with potentially significant implications for improving the accuracy of future climate reconstructions.
期刊介绍:
Agricultural and Forest Meteorology is an international journal for the publication of original articles and reviews on the inter-relationship between meteorology, agriculture, forestry, and natural ecosystems. Emphasis is on basic and applied scientific research relevant to practical problems in the field of plant and soil sciences, ecology and biogeochemistry as affected by weather as well as climate variability and change. Theoretical models should be tested against experimental data. Articles must appeal to an international audience. Special issues devoted to single topics are also published.
Typical topics include canopy micrometeorology (e.g. canopy radiation transfer, turbulence near the ground, evapotranspiration, energy balance, fluxes of trace gases), micrometeorological instrumentation (e.g., sensors for trace gases, flux measurement instruments, radiation measurement techniques), aerobiology (e.g. the dispersion of pollen, spores, insects and pesticides), biometeorology (e.g. the effect of weather and climate on plant distribution, crop yield, water-use efficiency, and plant phenology), forest-fire/weather interactions, and feedbacks from vegetation to weather and the climate system.