D-tetramethrin induces cardiac looping failure in zebrafish during embryonic development

IF 3.9 3区 环境科学与生态学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Comparative Biochemistry and Physiology C-toxicology & Pharmacology Pub Date : 2025-03-12 DOI:10.1016/j.cbpc.2025.110193
Xinhao Ye , Mijia Li , YunLong Meng , Shiyi Duan , Sijie Zhang , Keyuan Zhong
{"title":"D-tetramethrin induces cardiac looping failure in zebrafish during embryonic development","authors":"Xinhao Ye ,&nbsp;Mijia Li ,&nbsp;YunLong Meng ,&nbsp;Shiyi Duan ,&nbsp;Sijie Zhang ,&nbsp;Keyuan Zhong","doi":"10.1016/j.cbpc.2025.110193","DOIUrl":null,"url":null,"abstract":"<div><div>Cardiac looping is a crucial process during embryonic development. Abnormalities or failures in cardiac looping can lead to congenital heart defects, thereby affecting normal physiological function. Environmental pollutant exposure is one of the major causes of cardiac looping failure. D-tetramethrin is a hygienic insecticide widely used in households and public places, that can enter the human body through contact, insect transmission, and the food chain, thereby impacting human health. In this study, zebrafish embryos were exposed to different concentrations of D-tetramethrin to analyze its effects on heart development, and oxidative stress levels within the embryos. Additionally, qPCR was employed to analyze the transcription and the expression levels of genes related to heart development and function. The results showed that (1) D-tetramethrin exposure significantly reduced heart rate and increased the distance between the sinus venosus and the bulbus arteriosus (SV-BA), which suggested that D-tetramethrin induced cardiac looping failure and led to abnormal heart function. (2) D-tetramethrin exposure elevated the levels of reactive oxygen species (ROS) and malondialdehyde (MDA) in zebrafish embryos while decreasing the enzyme activities of key antioxidant stress enzymes, such as catalase (CAT) and superoxide dismutase (SOD). (3) D-tetramethrin exposure resulted in a significant downregulation of the transcription of cardiac looping-related genes (<em>Myh6</em>, <em>Nkx2.5</em>, <em>Tbx2b</em>, <em>Tbx5a, Tnnt2c and Hand2</em>) and heart function-related genes (<em>Gata4, Vmhc</em> and <em>Nppa</em>). Our findings indicate that D-tetramethrin causes the accumulation of ROS, which in turn alters the transcription levels of genes related to cardiac looping, ultimately resulting in cardiac looping failure.</div></div>","PeriodicalId":10602,"journal":{"name":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","volume":"294 ","pages":"Article 110193"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology C-toxicology & Pharmacology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1532045625000742","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cardiac looping is a crucial process during embryonic development. Abnormalities or failures in cardiac looping can lead to congenital heart defects, thereby affecting normal physiological function. Environmental pollutant exposure is one of the major causes of cardiac looping failure. D-tetramethrin is a hygienic insecticide widely used in households and public places, that can enter the human body through contact, insect transmission, and the food chain, thereby impacting human health. In this study, zebrafish embryos were exposed to different concentrations of D-tetramethrin to analyze its effects on heart development, and oxidative stress levels within the embryos. Additionally, qPCR was employed to analyze the transcription and the expression levels of genes related to heart development and function. The results showed that (1) D-tetramethrin exposure significantly reduced heart rate and increased the distance between the sinus venosus and the bulbus arteriosus (SV-BA), which suggested that D-tetramethrin induced cardiac looping failure and led to abnormal heart function. (2) D-tetramethrin exposure elevated the levels of reactive oxygen species (ROS) and malondialdehyde (MDA) in zebrafish embryos while decreasing the enzyme activities of key antioxidant stress enzymes, such as catalase (CAT) and superoxide dismutase (SOD). (3) D-tetramethrin exposure resulted in a significant downregulation of the transcription of cardiac looping-related genes (Myh6, Nkx2.5, Tbx2b, Tbx5a, Tnnt2c and Hand2) and heart function-related genes (Gata4, Vmhc and Nppa). Our findings indicate that D-tetramethrin causes the accumulation of ROS, which in turn alters the transcription levels of genes related to cardiac looping, ultimately resulting in cardiac looping failure.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.50
自引率
5.10%
发文量
206
审稿时长
30 days
期刊介绍: Part C: Toxicology and Pharmacology. This journal is concerned with chemical and drug action at different levels of organization, biotransformation of xenobiotics, mechanisms of toxicity, including reactive oxygen species and carcinogenesis, endocrine disruptors, natural products chemistry, and signal transduction with a molecular approach to these fields.
期刊最新文献
Acute hypoxia induces sleep disorders via sima/HIF-1α regulation of circadian rhythms in adult Drosophila Selenium-enriched Bacillus subtilis attenuates emamectin benzoate-induced liver injury in grass carp through inhibiting inflammation and ferroptosis via activating Nrf2 signaling pathway D-tetramethrin induces cardiac looping failure in zebrafish during embryonic development Toxic effects of combined exposure to carbamazepine and triclosan on adult zebrafish (Danio rerio): Insights into acute mortality, neurotransmitters, biochemical response, and histopathology. Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1