Phytomelatonin: Biosynthesis, Signaling, and Functions.

IF 21.3 1区 生物学 Q1 PLANT SCIENCES Annual review of plant biology Pub Date : 2025-03-14 DOI:10.1146/annurev-arplant-053124-045147
Qi Chen, Yanli Chen, Xue Li, Liping Zhang, Zed Rengel
{"title":"Phytomelatonin: Biosynthesis, Signaling, and Functions.","authors":"Qi Chen, Yanli Chen, Xue Li, Liping Zhang, Zed Rengel","doi":"10.1146/annurev-arplant-053124-045147","DOIUrl":null,"url":null,"abstract":"<p><p>Phytomelatonin has attracted significant attention over the years for its roles in promoting plant growth and enhancing stress resistance. The biosynthetic pathway of phytomelatonin is more intricate than that of melatonin in animals, occurring in plants in the endoplasmic reticulum, chloroplasts, mitochondria, and cytoplasm. By compartmentalizing phytomelatonin production within specific organelles and differentially expressing biosynthesis genes, plants may finely tune the levels of this hormone under normal growth conditions, as well as in rapid responses to changing environmental conditions. Phytomelatonin can interact with its receptor PMTR1, triggering G protein signaling, initiating ROS-Ca2+ signaling hubs, and activating MAPK cascades. Phytomelatonin's main role is promoting plant growth and development, whereas phytomelatonin-mediated resistance to numerous abiotic and biotic stresses is inducible and primed. The flexibility in the biosynthesis, together with the signaling pathways influenced, may contribute to phytomelatonin balancing the trade-offs between growth and stress resistance.</p>","PeriodicalId":8335,"journal":{"name":"Annual review of plant biology","volume":" ","pages":""},"PeriodicalIF":21.3000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of plant biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-arplant-053124-045147","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Phytomelatonin has attracted significant attention over the years for its roles in promoting plant growth and enhancing stress resistance. The biosynthetic pathway of phytomelatonin is more intricate than that of melatonin in animals, occurring in plants in the endoplasmic reticulum, chloroplasts, mitochondria, and cytoplasm. By compartmentalizing phytomelatonin production within specific organelles and differentially expressing biosynthesis genes, plants may finely tune the levels of this hormone under normal growth conditions, as well as in rapid responses to changing environmental conditions. Phytomelatonin can interact with its receptor PMTR1, triggering G protein signaling, initiating ROS-Ca2+ signaling hubs, and activating MAPK cascades. Phytomelatonin's main role is promoting plant growth and development, whereas phytomelatonin-mediated resistance to numerous abiotic and biotic stresses is inducible and primed. The flexibility in the biosynthesis, together with the signaling pathways influenced, may contribute to phytomelatonin balancing the trade-offs between growth and stress resistance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
植物褪黑素:生物合成、信号传递和功能。
植物褪黑素在促进植物生长和增强抗逆性方面的作用多年来一直备受关注。植物褪黑素的生物合成途径比动物褪黑素的生物合成途径更为复杂,在植物体内的内质网、叶绿体、线粒体和细胞质中都会出现。通过在特定细胞器内对植物褪黑激素的产生进行分区,并对生物合成基因进行不同表达,植物可以在正常生长条件下精细调节这种激素的水平,并对不断变化的环境条件做出快速反应。植物褪黑激素可与其受体 PMTR1 相互作用,触发 G 蛋白信号,启动 ROS-Ca2+ 信号中枢,并激活 MAPK 级联。植物褪黑激素的主要作用是促进植物的生长和发育,而植物褪黑激素介导的对多种非生物和生物胁迫的抗性是可诱导和启动的。生物合成的灵活性以及受影响的信号通路可能有助于植物褪黑激素平衡生长和抗逆性之间的权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annual review of plant biology
Annual review of plant biology 生物-植物科学
CiteScore
40.40
自引率
0.40%
发文量
29
期刊介绍: The Annual Review of Plant Biology is a peer-reviewed scientific journal published by Annual Reviews. It has been in publication since 1950 and covers significant developments in the field of plant biology, including biochemistry and biosynthesis, genetics, genomics and molecular biology, cell differentiation, tissue, organ and whole plant events, acclimation and adaptation, and methods and model organisms. The current volume of this journal has been converted from gated to open access through Annual Reviews' Subscribe to Open program, with all articles published under a CC BY license.
期刊最新文献
RNA Structure: Function and Application in Plant Biology. Phytomelatonin: Biosynthesis, Signaling, and Functions. Root Growth and Development in "Real Life": Advances and Challenges in Studying Root-Environment Interactions. Environmental and Biological Drivers of Root Exudation. Plant Peptide Ligands as Temporal and Spatial Regulators.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1