The Nuclear-Mitochondrial Crosstalk in Aging: From Mechanisms to Therapeutics.

IF 7.1 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Free Radical Biology and Medicine Pub Date : 2025-03-12 DOI:10.1016/j.freeradbiomed.2025.03.012
Yifei Feng, Yan Lu
{"title":"The Nuclear-Mitochondrial Crosstalk in Aging: From Mechanisms to Therapeutics.","authors":"Yifei Feng, Yan Lu","doi":"10.1016/j.freeradbiomed.2025.03.012","DOIUrl":null,"url":null,"abstract":"<p><p>Aging is a complex physiological process characterized by an irreversible decline in tissue and cellular functions, accompanied by an increased risk of age-related diseases, including neurodegenerative, cardiovascular, and metabolic disorders. Central to this process are epigenetic modifications, particularly DNA methylation, which regulate gene expression and contribute to aging-related epigenetic drift. This drift is characterized by global hypomethylation and localized hypermethylation, impacting genomic stability and cellular homeostasis. Simultaneously, mitochondrial dysfunction, a hallmark of aging, manifests as impaired oxidative phosphorylation, excessive reactive oxygen species production, and mitochondrial DNA mutations, driving oxidative stress and cellular senescence. Emerging evidence highlights a bidirectional interplay between epigenetics and mitochondrial function. DNA methylation modulates the expression of nuclear genes governing mitochondrial biogenesis and quality control, while mitochondrial metabolites, such as acetyl-CoA and S-adenosylmethionine, reciprocally influence epigenetic landscapes. This review delves into the intricate nuclear-mitochondrial crosstalk, emphasizing its role in aging-related diseases and exploring therapeutic avenues targeting these interconnected pathways to counteract aging and promote health span extension.</p>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":" ","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.freeradbiomed.2025.03.012","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Aging is a complex physiological process characterized by an irreversible decline in tissue and cellular functions, accompanied by an increased risk of age-related diseases, including neurodegenerative, cardiovascular, and metabolic disorders. Central to this process are epigenetic modifications, particularly DNA methylation, which regulate gene expression and contribute to aging-related epigenetic drift. This drift is characterized by global hypomethylation and localized hypermethylation, impacting genomic stability and cellular homeostasis. Simultaneously, mitochondrial dysfunction, a hallmark of aging, manifests as impaired oxidative phosphorylation, excessive reactive oxygen species production, and mitochondrial DNA mutations, driving oxidative stress and cellular senescence. Emerging evidence highlights a bidirectional interplay between epigenetics and mitochondrial function. DNA methylation modulates the expression of nuclear genes governing mitochondrial biogenesis and quality control, while mitochondrial metabolites, such as acetyl-CoA and S-adenosylmethionine, reciprocally influence epigenetic landscapes. This review delves into the intricate nuclear-mitochondrial crosstalk, emphasizing its role in aging-related diseases and exploring therapeutic avenues targeting these interconnected pathways to counteract aging and promote health span extension.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Free Radical Biology and Medicine
Free Radical Biology and Medicine 医学-内分泌学与代谢
CiteScore
14.00
自引率
4.10%
发文量
850
审稿时长
22 days
期刊介绍: Free Radical Biology and Medicine is a leading journal in the field of redox biology, which is the study of the role of reactive oxygen species (ROS) and other oxidizing agents in biological systems. The journal serves as a premier forum for publishing innovative and groundbreaking research that explores the redox biology of health and disease, covering a wide range of topics and disciplines. Free Radical Biology and Medicine also commissions Special Issues that highlight recent advances in both basic and clinical research, with a particular emphasis on the mechanisms underlying altered metabolism and redox signaling. These Special Issues aim to provide a focused platform for the latest research in the field, fostering collaboration and knowledge exchange among researchers and clinicians.
期刊最新文献
Corrigendum to "Nox 4 regulates the eNOS uncoupling process in aging endothelial cells" [Free Rad. Biol. Med. 113 (2017) 26-35]. Astragalin alleviates lipopolysaccharide-induced depressive-like behavior in mice by preserving blood-brain barrier integrity and suppressing neuroinflammation. Autophagy and Endoplasmic Reticulum Stress-Related Protein Homeostasis Links Palmitic Acid to Hepatic Lipotoxicity in Zebrafish (Danio rerio), Counteracted by Linoleic Acid. Carboxylesterase 2A gene knockout or enzyme inhibition alleviates steatohepatitis in rats by regulating PPARγ and endoplasmic reticulum stress. Exploring Biomarkers of Systemic Oxidative Stress and Placental Insufficiency in Pregnant Women with Inflammatory Bowel Diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1