Species-specific PHYTOCHROME-INTERACTING FACTOR utilization in the plant morphogenetic response to environmental stimuli.

IF 10 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Plant Cell Pub Date : 2025-03-14 DOI:10.1093/plcell/koaf048
Srinivas Kunta, Yardena Dahan, Shai Torgeman, Joanne Chory, Yogev Burko
{"title":"Species-specific PHYTOCHROME-INTERACTING FACTOR utilization in the plant morphogenetic response to environmental stimuli.","authors":"Srinivas Kunta, Yardena Dahan, Shai Torgeman, Joanne Chory, Yogev Burko","doi":"10.1093/plcell/koaf048","DOIUrl":null,"url":null,"abstract":"<p><p>PHYTOCHROME-INTERACTING FACTORs (PIFs) regulate growth-related gene expression in response to environmental conditions. Among their diverse functions in regulating signal responses, PIFs play an important role in thermomorphogenesis (the response to increased ambient temperature) and in the shade-avoidance response. While numerous studies have examined the varied roles of PIFs in Arabidopsis (Arabidopsis thaliana), their roles in crop plants remain poorly investigated. This study delves into the conservation of PIFs activity among species by examining their functions in tomato (Solanum lycopersicum) and comparing them to known PIF functions in Arabidopsis using single and higher-order mutants of tomato PIF genes (SlPIFs). We demonstrate that, in contrast to Arabidopsis, PIFs are not required for thermomorphogenesis-induced stem elongation in tomato. In addition, whereas Arabidopsis PIF8 has a minor effect on plant growth, tomato SlPIF8a plays a key role in the low red/far-red (R/FR) response. In contrast, SlPIF4 and SlPIF7s play minor roles in this process. We also investigated the tissue-specific low R/FR response in tomato seedlings and demonstrate that the aboveground organs exhibit a conserved response to low R/FR, which is regulated by SlPIFs. Our findings provide insights into PIF-mediated responses in crop plants, which may guide future breeding strategies to enhance yield under high planting densities.</p>","PeriodicalId":20186,"journal":{"name":"Plant Cell","volume":" ","pages":""},"PeriodicalIF":10.0000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plcell/koaf048","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

PHYTOCHROME-INTERACTING FACTORs (PIFs) regulate growth-related gene expression in response to environmental conditions. Among their diverse functions in regulating signal responses, PIFs play an important role in thermomorphogenesis (the response to increased ambient temperature) and in the shade-avoidance response. While numerous studies have examined the varied roles of PIFs in Arabidopsis (Arabidopsis thaliana), their roles in crop plants remain poorly investigated. This study delves into the conservation of PIFs activity among species by examining their functions in tomato (Solanum lycopersicum) and comparing them to known PIF functions in Arabidopsis using single and higher-order mutants of tomato PIF genes (SlPIFs). We demonstrate that, in contrast to Arabidopsis, PIFs are not required for thermomorphogenesis-induced stem elongation in tomato. In addition, whereas Arabidopsis PIF8 has a minor effect on plant growth, tomato SlPIF8a plays a key role in the low red/far-red (R/FR) response. In contrast, SlPIF4 and SlPIF7s play minor roles in this process. We also investigated the tissue-specific low R/FR response in tomato seedlings and demonstrate that the aboveground organs exhibit a conserved response to low R/FR, which is regulated by SlPIFs. Our findings provide insights into PIF-mediated responses in crop plants, which may guide future breeding strategies to enhance yield under high planting densities.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
植物形态发生过程中对环境刺激的反应中,物种特异性 PHYTOCHROME-INTERACTING FACTOR 的利用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Cell
Plant Cell 生物-生化与分子生物学
CiteScore
16.90
自引率
5.20%
发文量
337
审稿时长
2.4 months
期刊介绍: Title: Plant Cell Publisher: Published monthly by the American Society of Plant Biologists (ASPB) Produced by Sheridan Journal Services, Waterbury, VT History and Impact: Established in 1989 Within three years of publication, ranked first in impact among journals in plant sciences Maintains high standard of excellence Scope: Publishes novel research of special significance in plant biology Focus areas include cellular biology, molecular biology, biochemistry, genetics, development, and evolution Primary criteria: articles provide new insight of broad interest to plant biologists and are suitable for a wide audience Tenets: Publish the most exciting, cutting-edge research in plant cellular and molecular biology Provide rapid turnaround time for reviewing and publishing research papers Ensure highest quality reproduction of data Feature interactive format for commentaries, opinion pieces, and exchange of information in review articles, meeting reports, and insightful overviews.
期刊最新文献
Species-specific PHYTOCHROME-INTERACTING FACTOR utilization in the plant morphogenetic response to environmental stimuli. The kinase CPK5 phosphorylates MICRORCHIDIA1 to promote broad-spectrum disease resistance. With a little help from Ferredoxin-NADP+ reductase: Enhancing photosynthetic cyclic electron transfer around photosystem I. DEFinitely multitasking: Orchestration of petunia floral scent and petal formation. Melatonin a day: Mitigates saline-alkali stress away!
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1