Lagomorph cranial biomechanics and the functional significance of the unique fenestrated rostrum of leporids.

IF 1.8 4区 医学 Q2 ANATOMY & MORPHOLOGY Anatomical Record-Advances in Integrative Anatomy and Evolutionary Biology Pub Date : 2025-03-14 DOI:10.1002/ar.25656
Amber P Wood-Bailey, Alana C Sharp
{"title":"Lagomorph cranial biomechanics and the functional significance of the unique fenestrated rostrum of leporids.","authors":"Amber P Wood-Bailey, Alana C Sharp","doi":"10.1002/ar.25656","DOIUrl":null,"url":null,"abstract":"<p><p>The crania of leporid lagomorphs are uniquely fenestrated, including the posterior cranial bones and the lateral portion of the maxilla. The functional significance of the highly fenestrated rostrum has received considerably little attention, despite being absent in other mammalian herbivores with a long rostrum. This unique feature is of particular interest when considering functional relationships between the loading regime and cranial structure. Two primary hypotheses have been suggested: maxillary fenestrations may be associated with the transmission and redirection of incisal occlusal forces, or fenestrations may reduce skull weight to assist with maneuverability and increase running speed. Here we apply a comparative approach using finite element analysis to determine how the overall stress and strain environment is affected by the presence or absence of maxillary fenestrations. We compare three lagomorph species with various degrees of latticing in the fenestrated rostrum with two macropods that do not have fenestrations. We then produce theoretical models of the three lagomorphs by filling in the fenestrated region. Our results show that the presence of fenestrations makes little difference to the overall stress experienced through the cranium and does not impact the efficiency of incisor biting. This adds to the increasing evidence that features of lagomorph cranial morphology correlate with locomotor demands, adapting to loads other than mastication. Modulating cranial mass with fenestrations may provide the benefits of a lighter skull while still providing enough surface area for muscle attachments.</p>","PeriodicalId":50965,"journal":{"name":"Anatomical Record-Advances in Integrative Anatomy and Evolutionary Biology","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anatomical Record-Advances in Integrative Anatomy and Evolutionary Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/ar.25656","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The crania of leporid lagomorphs are uniquely fenestrated, including the posterior cranial bones and the lateral portion of the maxilla. The functional significance of the highly fenestrated rostrum has received considerably little attention, despite being absent in other mammalian herbivores with a long rostrum. This unique feature is of particular interest when considering functional relationships between the loading regime and cranial structure. Two primary hypotheses have been suggested: maxillary fenestrations may be associated with the transmission and redirection of incisal occlusal forces, or fenestrations may reduce skull weight to assist with maneuverability and increase running speed. Here we apply a comparative approach using finite element analysis to determine how the overall stress and strain environment is affected by the presence or absence of maxillary fenestrations. We compare three lagomorph species with various degrees of latticing in the fenestrated rostrum with two macropods that do not have fenestrations. We then produce theoretical models of the three lagomorphs by filling in the fenestrated region. Our results show that the presence of fenestrations makes little difference to the overall stress experienced through the cranium and does not impact the efficiency of incisor biting. This adds to the increasing evidence that features of lagomorph cranial morphology correlate with locomotor demands, adapting to loads other than mastication. Modulating cranial mass with fenestrations may provide the benefits of a lighter skull while still providing enough surface area for muscle attachments.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.80
自引率
15.00%
发文量
266
审稿时长
4 months
期刊介绍: The Anatomical Record
期刊最新文献
Re-examination of the oldest known frog from South America: New data prompt new evolutionary interpretations. Linking individual variation in facial musculature to facial behavior in rhesus macaques. New paleontological research in turtles and other vertebrates: Papers in honor of Dr. Emiliano Jiménez Fuentes. Paleoherpetology and The Anatomical Record. Lagomorph cranial biomechanics and the functional significance of the unique fenestrated rostrum of leporids.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1