{"title":"Size-dependent strength superiority in multi-principal element alloys versus constituent metals: Insights from machine-learning atomistic simulations","authors":"Fei Shuang , Yucheng Ji , Luca Laurenti , Poulumi Dey","doi":"10.1016/j.ijplas.2025.104308","DOIUrl":null,"url":null,"abstract":"<div><div>Multi-principal element alloys (MPEAs) are renowned for their enhanced mechanical strength relative to their constituent metals, as evidenced by various experimental techniques such as tension/compression tests and instrumental indentation. Nevertheless, atomistic simulations sometimes produce conflicting results, casting doubt on the consistently superior mechanical properties of MPEAs. In this study, machine-learning interatomic potentials (MLIPs) with first-principles accuracy were developed for body-centered cubic refractory MoNbTaW MPEAs, enabling systematic atomistic simulations under various deformation scenarios. The new MLIPs are supported by a comprehensive dataset encompassing extensive defects, and the established embedded-atom model (EAM) potential was benchmarked against both this dataset and the new MLIP. Simulations covering diverse compositions confirm that both MLIPs and EAM accurately capture the critical strengthening mechanisms in MoNbTaW MPEAs. It is revealed that MPEAs generally exhibit superior mechanical strength compared to their constituent metals in macroscale specimens, primarily due to solid solution strengthening during dislocation motion. However, at the nanoscale—where plasticity is predominantly governed by dislocation nucleation and grain boundary deformation—the constituent metals may outperform MPEAs. A critical length scale is identified above which MPEAs demonstrate enhanced mechanical strength relative to their constituent elements; below this scale, the advantage diminishes, underscoring a significant size-dependent effect that is crucial for optimizing MPEA applications, particularly at the nanoscale.</div></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"188 ","pages":"Article 104308"},"PeriodicalIF":9.4000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plasticity","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0749641925000671","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Multi-principal element alloys (MPEAs) are renowned for their enhanced mechanical strength relative to their constituent metals, as evidenced by various experimental techniques such as tension/compression tests and instrumental indentation. Nevertheless, atomistic simulations sometimes produce conflicting results, casting doubt on the consistently superior mechanical properties of MPEAs. In this study, machine-learning interatomic potentials (MLIPs) with first-principles accuracy were developed for body-centered cubic refractory MoNbTaW MPEAs, enabling systematic atomistic simulations under various deformation scenarios. The new MLIPs are supported by a comprehensive dataset encompassing extensive defects, and the established embedded-atom model (EAM) potential was benchmarked against both this dataset and the new MLIP. Simulations covering diverse compositions confirm that both MLIPs and EAM accurately capture the critical strengthening mechanisms in MoNbTaW MPEAs. It is revealed that MPEAs generally exhibit superior mechanical strength compared to their constituent metals in macroscale specimens, primarily due to solid solution strengthening during dislocation motion. However, at the nanoscale—where plasticity is predominantly governed by dislocation nucleation and grain boundary deformation—the constituent metals may outperform MPEAs. A critical length scale is identified above which MPEAs demonstrate enhanced mechanical strength relative to their constituent elements; below this scale, the advantage diminishes, underscoring a significant size-dependent effect that is crucial for optimizing MPEA applications, particularly at the nanoscale.
期刊介绍:
International Journal of Plasticity aims to present original research encompassing all facets of plastic deformation, damage, and fracture behavior in both isotropic and anisotropic solids. This includes exploring the thermodynamics of plasticity and fracture, continuum theory, and macroscopic as well as microscopic phenomena.
Topics of interest span the plastic behavior of single crystals and polycrystalline metals, ceramics, rocks, soils, composites, nanocrystalline and microelectronics materials, shape memory alloys, ferroelectric ceramics, thin films, and polymers. Additionally, the journal covers plasticity aspects of failure and fracture mechanics. Contributions involving significant experimental, numerical, or theoretical advancements that enhance the understanding of the plastic behavior of solids are particularly valued. Papers addressing the modeling of finite nonlinear elastic deformation, bearing similarities to the modeling of plastic deformation, are also welcomed.