Size-dependent strength superiority in multi-principal element alloys versus constituent metals: Insights from machine-learning atomistic simulations

IF 9.4 1区 材料科学 Q1 ENGINEERING, MECHANICAL International Journal of Plasticity Pub Date : 2025-03-16 DOI:10.1016/j.ijplas.2025.104308
Fei Shuang , Yucheng Ji , Luca Laurenti , Poulumi Dey
{"title":"Size-dependent strength superiority in multi-principal element alloys versus constituent metals: Insights from machine-learning atomistic simulations","authors":"Fei Shuang ,&nbsp;Yucheng Ji ,&nbsp;Luca Laurenti ,&nbsp;Poulumi Dey","doi":"10.1016/j.ijplas.2025.104308","DOIUrl":null,"url":null,"abstract":"<div><div>Multi-principal element alloys (MPEAs) are renowned for their enhanced mechanical strength relative to their constituent metals, as evidenced by various experimental techniques such as tension/compression tests and instrumental indentation. Nevertheless, atomistic simulations sometimes produce conflicting results, casting doubt on the consistently superior mechanical properties of MPEAs. In this study, machine-learning interatomic potentials (MLIPs) with first-principles accuracy were developed for body-centered cubic refractory MoNbTaW MPEAs, enabling systematic atomistic simulations under various deformation scenarios. The new MLIPs are supported by a comprehensive dataset encompassing extensive defects, and the established embedded-atom model (EAM) potential was benchmarked against both this dataset and the new MLIP. Simulations covering diverse compositions confirm that both MLIPs and EAM accurately capture the critical strengthening mechanisms in MoNbTaW MPEAs. It is revealed that MPEAs generally exhibit superior mechanical strength compared to their constituent metals in macroscale specimens, primarily due to solid solution strengthening during dislocation motion. However, at the nanoscale—where plasticity is predominantly governed by dislocation nucleation and grain boundary deformation—the constituent metals may outperform MPEAs. A critical length scale is identified above which MPEAs demonstrate enhanced mechanical strength relative to their constituent elements; below this scale, the advantage diminishes, underscoring a significant size-dependent effect that is crucial for optimizing MPEA applications, particularly at the nanoscale.</div></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"188 ","pages":"Article 104308"},"PeriodicalIF":9.4000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plasticity","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0749641925000671","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Multi-principal element alloys (MPEAs) are renowned for their enhanced mechanical strength relative to their constituent metals, as evidenced by various experimental techniques such as tension/compression tests and instrumental indentation. Nevertheless, atomistic simulations sometimes produce conflicting results, casting doubt on the consistently superior mechanical properties of MPEAs. In this study, machine-learning interatomic potentials (MLIPs) with first-principles accuracy were developed for body-centered cubic refractory MoNbTaW MPEAs, enabling systematic atomistic simulations under various deformation scenarios. The new MLIPs are supported by a comprehensive dataset encompassing extensive defects, and the established embedded-atom model (EAM) potential was benchmarked against both this dataset and the new MLIP. Simulations covering diverse compositions confirm that both MLIPs and EAM accurately capture the critical strengthening mechanisms in MoNbTaW MPEAs. It is revealed that MPEAs generally exhibit superior mechanical strength compared to their constituent metals in macroscale specimens, primarily due to solid solution strengthening during dislocation motion. However, at the nanoscale—where plasticity is predominantly governed by dislocation nucleation and grain boundary deformation—the constituent metals may outperform MPEAs. A critical length scale is identified above which MPEAs demonstrate enhanced mechanical strength relative to their constituent elements; below this scale, the advantage diminishes, underscoring a significant size-dependent effect that is crucial for optimizing MPEA applications, particularly at the nanoscale.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多主元素合金与组成金属的强度优劣取决于尺寸:机器学习原子模拟的启示
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
相关文献
来源期刊
International Journal of Plasticity
International Journal of Plasticity 工程技术-材料科学:综合
CiteScore
15.30
自引率
26.50%
发文量
256
审稿时长
46 days
期刊介绍: International Journal of Plasticity aims to present original research encompassing all facets of plastic deformation, damage, and fracture behavior in both isotropic and anisotropic solids. This includes exploring the thermodynamics of plasticity and fracture, continuum theory, and macroscopic as well as microscopic phenomena. Topics of interest span the plastic behavior of single crystals and polycrystalline metals, ceramics, rocks, soils, composites, nanocrystalline and microelectronics materials, shape memory alloys, ferroelectric ceramics, thin films, and polymers. Additionally, the journal covers plasticity aspects of failure and fracture mechanics. Contributions involving significant experimental, numerical, or theoretical advancements that enhance the understanding of the plastic behavior of solids are particularly valued. Papers addressing the modeling of finite nonlinear elastic deformation, bearing similarities to the modeling of plastic deformation, are also welcomed.
期刊最新文献
Superior strength-ductility synergy of Al-Si-Cu-Mg alloys achieved by regulating solute clusters and precipitates: experimental validation and numerical simulation Strain Gradient-induced Size Effect of Nickel-Titanium Shape Memory Alloys A texture-dependent yield criterion based on Support Vector Classification Statistical evaluation of microscale stress conditions leading to void nucleation in the weak shock regime Phase-specific tailoring strategy for synergetic and prolonged work hardening to achieve superior strength-plasticity in lamellar-structured alloy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1