Noah J. Schmelzer, Evan J. Lieberman, Nan Chen, Samuel D. Dunham, Veronica Anghel, George T. Gray, Curt A. Bronkhorst
{"title":"Statistical evaluation of microscale stress conditions leading to void nucleation in the weak shock regime","authors":"Noah J. Schmelzer, Evan J. Lieberman, Nan Chen, Samuel D. Dunham, Veronica Anghel, George T. Gray, Curt A. Bronkhorst","doi":"10.1016/j.ijplas.2025.104318","DOIUrl":null,"url":null,"abstract":"We investigate the heterogeneity of the stress state driven by anisotropic deformation response at the single crystal level through five statistical volume element (SVE) calculations of polycrystalline BCC tantalum. This work focuses on grain boundaries as a prominent material defect type prone to void nucleation based upon experimental observations of predominantly intergranular void nucleation in this material. The SVEs are constructed to be statistically representative of larger volumes of material and are meshed such that mean and standard deviation of grain size and orientation information is reconstructed. The computational meshes feature hexahedral (brick) elements and smooth conformal grain boundaries where significant stress concentration is known to occur, a tail effect of interest in the extreme events process of dynamic ductile damage. An existing micromechanical crystallographic plasticity model shown to capture the single crystal behavior of BCC tantalum well is used to perform the polycrystal calculations. The model includes representation of the non-Schmid effect of non-planar screw dislocation kinetics in tantalum. A three-dimensional stress state time profile predicted by damage modeling of a flyer plate impact experiment is applied as boundary conditions to each SVE. Resulting grain boundary stress state statistics are strongly non-Gaussian. Significant structural evolution is observed within the compressive hold before unloading into tension in the stress profile. Strong angular dependence of grain boundary traction magnitude with shock direction is observed. Non-Schmid effects continue to suggest their influence on propensity of microstructural defect types to nucleate voids. A general void nucleation criterion is proposed using probability theory. The general framework is specified to polycrystalline BCC tantalum in the weak shock regime to include the SVE calculations and literature molecular dynamics calculations of grain boundary void nucleation strength. Probability density functions (PDFs) are used to describe the interaction between the local stress state heterogeneity and the distributed grain boundary void nucleation strength state. A causation entropy maximization procedure removes the requirement for ad hoc selection of a PDF functional form and provides a rigorous procedure for data-based PDF determination. The resulting physically informed PDF describes the spatial appearance frequency of nucleated voids as a function of applied macroscale pressure. Lower length scale physics are thus packaged in a precise and computationally efficient way to provide computational plasticity insight to macroscale dynamic ductile damage models.","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"20 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plasticity","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.ijplas.2025.104318","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate the heterogeneity of the stress state driven by anisotropic deformation response at the single crystal level through five statistical volume element (SVE) calculations of polycrystalline BCC tantalum. This work focuses on grain boundaries as a prominent material defect type prone to void nucleation based upon experimental observations of predominantly intergranular void nucleation in this material. The SVEs are constructed to be statistically representative of larger volumes of material and are meshed such that mean and standard deviation of grain size and orientation information is reconstructed. The computational meshes feature hexahedral (brick) elements and smooth conformal grain boundaries where significant stress concentration is known to occur, a tail effect of interest in the extreme events process of dynamic ductile damage. An existing micromechanical crystallographic plasticity model shown to capture the single crystal behavior of BCC tantalum well is used to perform the polycrystal calculations. The model includes representation of the non-Schmid effect of non-planar screw dislocation kinetics in tantalum. A three-dimensional stress state time profile predicted by damage modeling of a flyer plate impact experiment is applied as boundary conditions to each SVE. Resulting grain boundary stress state statistics are strongly non-Gaussian. Significant structural evolution is observed within the compressive hold before unloading into tension in the stress profile. Strong angular dependence of grain boundary traction magnitude with shock direction is observed. Non-Schmid effects continue to suggest their influence on propensity of microstructural defect types to nucleate voids. A general void nucleation criterion is proposed using probability theory. The general framework is specified to polycrystalline BCC tantalum in the weak shock regime to include the SVE calculations and literature molecular dynamics calculations of grain boundary void nucleation strength. Probability density functions (PDFs) are used to describe the interaction between the local stress state heterogeneity and the distributed grain boundary void nucleation strength state. A causation entropy maximization procedure removes the requirement for ad hoc selection of a PDF functional form and provides a rigorous procedure for data-based PDF determination. The resulting physically informed PDF describes the spatial appearance frequency of nucleated voids as a function of applied macroscale pressure. Lower length scale physics are thus packaged in a precise and computationally efficient way to provide computational plasticity insight to macroscale dynamic ductile damage models.
期刊介绍:
International Journal of Plasticity aims to present original research encompassing all facets of plastic deformation, damage, and fracture behavior in both isotropic and anisotropic solids. This includes exploring the thermodynamics of plasticity and fracture, continuum theory, and macroscopic as well as microscopic phenomena.
Topics of interest span the plastic behavior of single crystals and polycrystalline metals, ceramics, rocks, soils, composites, nanocrystalline and microelectronics materials, shape memory alloys, ferroelectric ceramics, thin films, and polymers. Additionally, the journal covers plasticity aspects of failure and fracture mechanics. Contributions involving significant experimental, numerical, or theoretical advancements that enhance the understanding of the plastic behavior of solids are particularly valued. Papers addressing the modeling of finite nonlinear elastic deformation, bearing similarities to the modeling of plastic deformation, are also welcomed.