Learning-guided bi-objective evolutionary optimization for green municipal waste collection vehicle routing

IF 9.7 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL Journal of Cleaner Production Pub Date : 2025-03-15 DOI:10.1016/j.jclepro.2025.145316
Shubing Liao, Yixin Xu, Yunyun Niu, Zhiguang Cao
{"title":"Learning-guided bi-objective evolutionary optimization for green municipal waste collection vehicle routing","authors":"Shubing Liao, Yixin Xu, Yunyun Niu, Zhiguang Cao","doi":"10.1016/j.jclepro.2025.145316","DOIUrl":null,"url":null,"abstract":"Waste management has emerged as a critical issue in modern society, where vehicles are scheduled to visit multiple locations for waste collection and transport. This study focuses on a key problem in waste management: route optimization of waste collection vehicles, and formulate it as a bi-objective vehicle routing problem with stochastic demand (VRPSD), aiming to minimizing both total costs and carbon emissions. Although previous studies have significantly advanced our understanding of solving similar problems, the lack of real-world data and limited problem-solving capabilities still restrict the practical applicability of existing methods. To bridge this research gap, this study designed a regression model using nighttime light data to efficiently and accurately generate two real-case instances in Beijing. Furthermore, a multi-objective evolutionary algorithm integrates Efficient Non-dominated Sorting with Sequential Search and a one-dimensional convolutional neural network (MEAE1C) is proposed to solve the VRPSD problem. MEAE1C integrates a CNN evolver to leverage knowledge from current high-quality solutions to guide subsequent population evolution. Experimental results confirm the superior accuracy in estimates of waste generation, and extensive simulations on benchmark datasets and real-case scenarios consistently demonstrate the superiority of MEAE1C over existing methods. The above results highlight the practical feasibility of the proposed methods in addressing real- world municipal waste management challenges.","PeriodicalId":349,"journal":{"name":"Journal of Cleaner Production","volume":"5 1","pages":""},"PeriodicalIF":9.7000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cleaner Production","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jclepro.2025.145316","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Waste management has emerged as a critical issue in modern society, where vehicles are scheduled to visit multiple locations for waste collection and transport. This study focuses on a key problem in waste management: route optimization of waste collection vehicles, and formulate it as a bi-objective vehicle routing problem with stochastic demand (VRPSD), aiming to minimizing both total costs and carbon emissions. Although previous studies have significantly advanced our understanding of solving similar problems, the lack of real-world data and limited problem-solving capabilities still restrict the practical applicability of existing methods. To bridge this research gap, this study designed a regression model using nighttime light data to efficiently and accurately generate two real-case instances in Beijing. Furthermore, a multi-objective evolutionary algorithm integrates Efficient Non-dominated Sorting with Sequential Search and a one-dimensional convolutional neural network (MEAE1C) is proposed to solve the VRPSD problem. MEAE1C integrates a CNN evolver to leverage knowledge from current high-quality solutions to guide subsequent population evolution. Experimental results confirm the superior accuracy in estimates of waste generation, and extensive simulations on benchmark datasets and real-case scenarios consistently demonstrate the superiority of MEAE1C over existing methods. The above results highlight the practical feasibility of the proposed methods in addressing real- world municipal waste management challenges.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
学习指导下的双目标进化优化,用于绿色城市垃圾收集车路由选择
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Cleaner Production
Journal of Cleaner Production 环境科学-工程:环境
CiteScore
20.40
自引率
9.00%
发文量
4720
审稿时长
111 days
期刊介绍: The Journal of Cleaner Production is an international, transdisciplinary journal that addresses and discusses theoretical and practical Cleaner Production, Environmental, and Sustainability issues. It aims to help societies become more sustainable by focusing on the concept of 'Cleaner Production', which aims at preventing waste production and increasing efficiencies in energy, water, resources, and human capital use. The journal serves as a platform for corporations, governments, education institutions, regions, and societies to engage in discussions and research related to Cleaner Production, environmental, and sustainability practices.
期刊最新文献
From corporate earnings calls to social impact: Exploring ESG signals in S&P 500 ESG index companies through transformer-based models Two years monitoring and optimization of a large-scale Constructed Wetland in the Red Sea designed for 70,000 inhabitants Pyrolysis or not: Comparison between biomass and biochar for vanadium stabilization in soil Promoting Sustainable Mining: A Life Cycle Assessment Model for Small-Scale Underground Chromite Mining and Processing Operations Learning-guided bi-objective evolutionary optimization for green municipal waste collection vehicle routing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1