A lightweight pressure- and gas-preserved coring tool for accurate gas content measurement in deep coal seams

IF 9.7 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL Journal of Cleaner Production Pub Date : 2025-03-17 DOI:10.1016/j.jclepro.2025.145230
Ju Li, Heping Xie, Jianan Li, Tianyu Wang, Guikang Liu, Mingzhong Gao, Zetian Zhang
{"title":"A lightweight pressure- and gas-preserved coring tool for accurate gas content measurement in deep coal seams","authors":"Ju Li, Heping Xie, Jianan Li, Tianyu Wang, Guikang Liu, Mingzhong Gao, Zetian Zhang","doi":"10.1016/j.jclepro.2025.145230","DOIUrl":null,"url":null,"abstract":"Accurately quantifying coal seam gas content is essential for disaster prevention, efficient resource management, and the advancement of sustainable and environmentally responsible mining practices. However, conventional methods struggle to preserve in-situ gas conditions and rely on empirical loss gas estimations, introducing estimation errors. This study proposes a pressure- and gas-preserved coring principle, emphasizing the benefits of maintaining in-situ pressure and water environments to stabilize gas occurrence states. The principle underscores that utilizing pressure-preserved coring technology for sampling, transferring, and storing high-fidelity coal cores can effectively eliminate errors arising from estimation-based gas content calculations. To implement this principle, we present an innovative lightweight pressure- and gas-preserved coring tool, specifically designed for deep coal seam sampling in confined underground environments. The coring tool features a high-strength threaded structure validated through 3D mesh simulation, a self-sealing pressure chamber, and a time-separated waterway, enabling stable sample retrieval, storage, and transfer under in-situ conditions. Comprehensive laboratory testing and field trials in underground coal mines confirm the tool’s effectiveness. Capable of operating in both horizontal and vertical boreholes with a 95 mm aperture, it reliably extracts high-quality 40 mm diameter coal cores under a maximum environmental pressure of 26 MPa. These advancements significantly enhance the accuracy of coal seam gas content assessments, reduce reliance on empirical loss gas estimations, and promote safer, more environmentally friendly mining operations.","PeriodicalId":349,"journal":{"name":"Journal of Cleaner Production","volume":"17 1","pages":""},"PeriodicalIF":9.7000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cleaner Production","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jclepro.2025.145230","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Accurately quantifying coal seam gas content is essential for disaster prevention, efficient resource management, and the advancement of sustainable and environmentally responsible mining practices. However, conventional methods struggle to preserve in-situ gas conditions and rely on empirical loss gas estimations, introducing estimation errors. This study proposes a pressure- and gas-preserved coring principle, emphasizing the benefits of maintaining in-situ pressure and water environments to stabilize gas occurrence states. The principle underscores that utilizing pressure-preserved coring technology for sampling, transferring, and storing high-fidelity coal cores can effectively eliminate errors arising from estimation-based gas content calculations. To implement this principle, we present an innovative lightweight pressure- and gas-preserved coring tool, specifically designed for deep coal seam sampling in confined underground environments. The coring tool features a high-strength threaded structure validated through 3D mesh simulation, a self-sealing pressure chamber, and a time-separated waterway, enabling stable sample retrieval, storage, and transfer under in-situ conditions. Comprehensive laboratory testing and field trials in underground coal mines confirm the tool’s effectiveness. Capable of operating in both horizontal and vertical boreholes with a 95 mm aperture, it reliably extracts high-quality 40 mm diameter coal cores under a maximum environmental pressure of 26 MPa. These advancements significantly enhance the accuracy of coal seam gas content assessments, reduce reliance on empirical loss gas estimations, and promote safer, more environmentally friendly mining operations.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Cleaner Production
Journal of Cleaner Production 环境科学-工程:环境
CiteScore
20.40
自引率
9.00%
发文量
4720
审稿时长
111 days
期刊介绍: The Journal of Cleaner Production is an international, transdisciplinary journal that addresses and discusses theoretical and practical Cleaner Production, Environmental, and Sustainability issues. It aims to help societies become more sustainable by focusing on the concept of 'Cleaner Production', which aims at preventing waste production and increasing efficiencies in energy, water, resources, and human capital use. The journal serves as a platform for corporations, governments, education institutions, regions, and societies to engage in discussions and research related to Cleaner Production, environmental, and sustainability practices.
期刊最新文献
Solar-Driven Degradation of Malachite Green by Photoenzyme: Mechanisms and Sustainable Water Treatment A lightweight pressure- and gas-preserved coring tool for accurate gas content measurement in deep coal seams The Impact of Land Conservation and Intensification Policy on Green Land Use Efficiency: The Role of Factor Agglomeration Enhanced Removal of Lead Complexes Using Phosphide-Modified Nanoscale Zero-Valent Iron: The Boosting Impact of the Iron Cycle From corporate earnings calls to social impact: Exploring ESG signals in S&P 500 ESG index companies through transformer-based models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1