Sheng Yin, Jonathan J. Calvillo Solís, Christian Sandoval-Pauker, Diego Puerto-Diaz, Dino Villagrán
{"title":"Advances in PFAS Electrochemical Reduction: Mechanisms, Materials, and Future Perspectives","authors":"Sheng Yin, Jonathan J. Calvillo Solís, Christian Sandoval-Pauker, Diego Puerto-Diaz, Dino Villagrán","doi":"10.1016/j.jhazmat.2025.137943","DOIUrl":null,"url":null,"abstract":"Per- and polyfluoroalkyl substances (PFAS) are a group of synthetic chemicals that pose significant risks to both human and environmental health due to their widespread use and stability. Traditional remediation methods, such as adsorption and filtration, concentrate PFAS without breaking them down. Alternative methods, such as pyrolysis, chemical oxidation, and photodegradation, often require costly and complex conditions. Electrochemical technology is a promising alternative for PFAS removal. In particular, electrochemical reduction has been emerging in recent years as a promising alternative to promote C–F dissociation and H–F exchange reactions, thus generating less fluorinated compounds. This review summarizes the advances in technologies for PFAS electrochemical reduction, with proposed electrochemical reduction mechanisms, the factors that influence the removal of PFAS, and the challenges and future directions associated with these methods. Novel materials, such as nanocatalysts, molecularly inspired networks, or 2D/3D materials, are stable in aqueous environments and exhibit high electrochemical activity toward C–F bond dissociation. In addition, the above materials show potential for scalable applications in PFAS treatment, although further research is needed to optimize their performance. This review also aims to understand the opportunities and challenges in PFAS electrochemical reduction, offering insights for future research and development.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"19 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2025.137943","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a group of synthetic chemicals that pose significant risks to both human and environmental health due to their widespread use and stability. Traditional remediation methods, such as adsorption and filtration, concentrate PFAS without breaking them down. Alternative methods, such as pyrolysis, chemical oxidation, and photodegradation, often require costly and complex conditions. Electrochemical technology is a promising alternative for PFAS removal. In particular, electrochemical reduction has been emerging in recent years as a promising alternative to promote C–F dissociation and H–F exchange reactions, thus generating less fluorinated compounds. This review summarizes the advances in technologies for PFAS electrochemical reduction, with proposed electrochemical reduction mechanisms, the factors that influence the removal of PFAS, and the challenges and future directions associated with these methods. Novel materials, such as nanocatalysts, molecularly inspired networks, or 2D/3D materials, are stable in aqueous environments and exhibit high electrochemical activity toward C–F bond dissociation. In addition, the above materials show potential for scalable applications in PFAS treatment, although further research is needed to optimize their performance. This review also aims to understand the opportunities and challenges in PFAS electrochemical reduction, offering insights for future research and development.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.