Seismic response and run-out process of the Shiguchuan landslide: Insights from geological investigations and numerical simulation

IF 3.1 2区 地球科学 Q2 GEOGRAPHY, PHYSICAL Geomorphology Pub Date : 2025-03-14 DOI:10.1016/j.geomorph.2025.109725
Ping Sun , Haojie Wang , Chaoying Ke , Kangyun Sang , Shuai Han , Shuai Zhang
{"title":"Seismic response and run-out process of the Shiguchuan landslide: Insights from geological investigations and numerical simulation","authors":"Ping Sun ,&nbsp;Haojie Wang ,&nbsp;Chaoying Ke ,&nbsp;Kangyun Sang ,&nbsp;Shuai Han ,&nbsp;Shuai Zhang","doi":"10.1016/j.geomorph.2025.109725","DOIUrl":null,"url":null,"abstract":"<div><div>Tianshui City is located in the transitional zone between the Western Qinling Mountains and the Loess Plateau, an area significantly affected by strong earthquakes. Historical seismic events have induced numerous landslides in this region. Through an integrated methodology combining field investigations, drilling, and numerical simulation, the seismic response and failure mechanisms of the loess-bedrock slope are revealed, and the run-out process of Shiguchuan landslide under basic and rare seismic conditions is examined. The key findings are as follows: The seismic response of the loess-bedrock slope is primarily controlled by the thickness of the loess layer, topographic features, and the loess-bedrock interface, which exhibits significant elevation amplification, surface amplification, and loess layer amplification effects. Below the mid-slope elevation, horizontal acceleration amplification factors (AAFs) dominate over vertical components, whereas this relationship reverses above the mid-slope elevation. Spectral analysis reveals that the seismic amplification in loess-bedrock slopes exhibits pronounced frequency-dependent characteristics. Significant amplification of horizontal components (2.2–2.5 Hz) and vertical components (5–6 Hz) is observed in the upper-middle slope section. The failure mechanism of the Shiguchuan landslide is characterized by high-level shear sliding of the mid-upper slope loess along the bedrock interface. Under rare seismic conditions, the run-out and accumulation behaviors of the landslide, as determined by numerical simulations, are generally consistent with the post-failure characteristics observed through field investigations, suggesting that the Shiguchuan landslide was likely triggered by seismic ground motions with a PGA (peak ground motion acceleration) of ≥0.6 g. These results have significant implications for understanding the dynamic behavior of such landslides and the potential triggering seismic intensities.</div></div>","PeriodicalId":55115,"journal":{"name":"Geomorphology","volume":"478 ","pages":"Article 109725"},"PeriodicalIF":3.1000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomorphology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169555X25001357","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Tianshui City is located in the transitional zone between the Western Qinling Mountains and the Loess Plateau, an area significantly affected by strong earthquakes. Historical seismic events have induced numerous landslides in this region. Through an integrated methodology combining field investigations, drilling, and numerical simulation, the seismic response and failure mechanisms of the loess-bedrock slope are revealed, and the run-out process of Shiguchuan landslide under basic and rare seismic conditions is examined. The key findings are as follows: The seismic response of the loess-bedrock slope is primarily controlled by the thickness of the loess layer, topographic features, and the loess-bedrock interface, which exhibits significant elevation amplification, surface amplification, and loess layer amplification effects. Below the mid-slope elevation, horizontal acceleration amplification factors (AAFs) dominate over vertical components, whereas this relationship reverses above the mid-slope elevation. Spectral analysis reveals that the seismic amplification in loess-bedrock slopes exhibits pronounced frequency-dependent characteristics. Significant amplification of horizontal components (2.2–2.5 Hz) and vertical components (5–6 Hz) is observed in the upper-middle slope section. The failure mechanism of the Shiguchuan landslide is characterized by high-level shear sliding of the mid-upper slope loess along the bedrock interface. Under rare seismic conditions, the run-out and accumulation behaviors of the landslide, as determined by numerical simulations, are generally consistent with the post-failure characteristics observed through field investigations, suggesting that the Shiguchuan landslide was likely triggered by seismic ground motions with a PGA (peak ground motion acceleration) of ≥0.6 g. These results have significant implications for understanding the dynamic behavior of such landslides and the potential triggering seismic intensities.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Geomorphology
Geomorphology 地学-地球科学综合
CiteScore
8.00
自引率
10.30%
发文量
309
审稿时长
3.4 months
期刊介绍: Our journal''s scope includes geomorphic themes of: tectonics and regional structure; glacial processes and landforms; fluvial sequences, Quaternary environmental change and dating; fluvial processes and landforms; mass movement, slopes and periglacial processes; hillslopes and soil erosion; weathering, karst and soils; aeolian processes and landforms, coastal dunes and arid environments; coastal and marine processes, estuaries and lakes; modelling, theoretical and quantitative geomorphology; DEM, GIS and remote sensing methods and applications; hazards, applied and planetary geomorphology; and volcanics.
期刊最新文献
Numerical study on morphology and material spatial distribution of landslide dams in different shaped valleys Seismic response and run-out process of the Shiguchuan landslide: Insights from geological investigations and numerical simulation Editorial Board Comment to “Geomorphology of subaerial mud volcanoes in Azerbaijan: Issues about edifice construction and degradation”. Insights from 10Be dates for the Ayazakhtarma mud volcano Dynamic friction behaviors of slip surfaces in granite and implications for large rapid rockslides with long runouts on the southeastern Tibetan Plateau: Constraints from an experimental investigation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1