Hai Sun , Zhenrui Wang , Yu Fu , Liqiang Ma , Changyan Shi , Hongli Li , Chun Fu
{"title":"Infrared radiation characteristics of heterogeneous granite fracture under compression","authors":"Hai Sun , Zhenrui Wang , Yu Fu , Liqiang Ma , Changyan Shi , Hongli Li , Chun Fu","doi":"10.1016/j.infrared.2025.105816","DOIUrl":null,"url":null,"abstract":"<div><div>Infrared thermal imaging monitoring technology currently cannot accurately characterize the changes in rock internal structural damage, which remains a scientific problem requiring further investigation in modern rock mechanics. To address this issue, this paper takes granite as the research object. The indoor infrared thermal imaging monitoring of granite under uniaxial loading conditions and numerical simulation experiments of uniaxial compression in heterogeneous granite using the finite difference software FLAC<sup>3D</sup> were conducted. The quantitative relationship between surface damage variables and internal damage variables at different loading stages of granite is established. Specifically, the relationship is exponential during the plastic deformation stage, while in the failure stage, the relationship becomes parabolic, characterized by a simultaneous surge phenomenon in both types of damage. Furthermore, the quantitative relationship between infrared radiation temperature and principal stress is established, revealing that the correlation between infrared radiation temperature and principal stress is a positive linear relationship with a linear correlation coefficient exceeding 0.95. Finally, this research combines numerical simulations of the rock fracture process with infrared thermal imaging monitoring. On this basis, a new interactive method that integrates infrared thermal imaging and numerical simulation for rock fracture analysis is proposed.</div></div>","PeriodicalId":13549,"journal":{"name":"Infrared Physics & Technology","volume":"147 ","pages":"Article 105816"},"PeriodicalIF":3.1000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infrared Physics & Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350449525001094","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Infrared thermal imaging monitoring technology currently cannot accurately characterize the changes in rock internal structural damage, which remains a scientific problem requiring further investigation in modern rock mechanics. To address this issue, this paper takes granite as the research object. The indoor infrared thermal imaging monitoring of granite under uniaxial loading conditions and numerical simulation experiments of uniaxial compression in heterogeneous granite using the finite difference software FLAC3D were conducted. The quantitative relationship between surface damage variables and internal damage variables at different loading stages of granite is established. Specifically, the relationship is exponential during the plastic deformation stage, while in the failure stage, the relationship becomes parabolic, characterized by a simultaneous surge phenomenon in both types of damage. Furthermore, the quantitative relationship between infrared radiation temperature and principal stress is established, revealing that the correlation between infrared radiation temperature and principal stress is a positive linear relationship with a linear correlation coefficient exceeding 0.95. Finally, this research combines numerical simulations of the rock fracture process with infrared thermal imaging monitoring. On this basis, a new interactive method that integrates infrared thermal imaging and numerical simulation for rock fracture analysis is proposed.
期刊介绍:
The Journal covers the entire field of infrared physics and technology: theory, experiment, application, devices and instrumentation. Infrared'' is defined as covering the near, mid and far infrared (terahertz) regions from 0.75um (750nm) to 1mm (300GHz.) Submissions in the 300GHz to 100GHz region may be accepted at the editors discretion if their content is relevant to shorter wavelengths. Submissions must be primarily concerned with and directly relevant to this spectral region.
Its core topics can be summarized as the generation, propagation and detection, of infrared radiation; the associated optics, materials and devices; and its use in all fields of science, industry, engineering and medicine.
Infrared techniques occur in many different fields, notably spectroscopy and interferometry; material characterization and processing; atmospheric physics, astronomy and space research. Scientific aspects include lasers, quantum optics, quantum electronics, image processing and semiconductor physics. Some important applications are medical diagnostics and treatment, industrial inspection and environmental monitoring.