{"title":"An improved network embedding method with multi-level closeness on link prediction","authors":"Zheng Wang, Tian Qiu, Guang Chen","doi":"10.1016/j.cjph.2025.03.001","DOIUrl":null,"url":null,"abstract":"<div><div>Network representation learning provides an important tool to link prediction in complex networks. Many existing methods consider the random walk within the direct neighbors of the nodes, however, ignore the closeness level between nodes. In this article, we propose a novel network embedding method by considering the closeness of three different levels, i.e., the close, median and faraway relationships. The close relationship is modeled by a natural nearest neighbor, the median relationship is referred to as the direct neighbor, and the faraway relationship is simulated by a role discovery. Diversified learning can better capture the node feature, and therefore helps improving link prediction. Experimental results show that the proposed method outperforms nine baseline methods, by testing them on six real datasets. The closenesses of the three levels are found to impact differently on the networks. In general, the direct neighbor closeness has a great impact, however, for the network with specific characteristics, other closenesses may be more important, e.g., the role neighbor closeness is important in the economic network.</div></div>","PeriodicalId":10340,"journal":{"name":"Chinese Journal of Physics","volume":"95 ","pages":"Pages 248-259"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0577907325000930","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Network representation learning provides an important tool to link prediction in complex networks. Many existing methods consider the random walk within the direct neighbors of the nodes, however, ignore the closeness level between nodes. In this article, we propose a novel network embedding method by considering the closeness of three different levels, i.e., the close, median and faraway relationships. The close relationship is modeled by a natural nearest neighbor, the median relationship is referred to as the direct neighbor, and the faraway relationship is simulated by a role discovery. Diversified learning can better capture the node feature, and therefore helps improving link prediction. Experimental results show that the proposed method outperforms nine baseline methods, by testing them on six real datasets. The closenesses of the three levels are found to impact differently on the networks. In general, the direct neighbor closeness has a great impact, however, for the network with specific characteristics, other closenesses may be more important, e.g., the role neighbor closeness is important in the economic network.
期刊介绍:
The Chinese Journal of Physics publishes important advances in various branches in physics, including statistical and biophysical physics, condensed matter physics, atomic/molecular physics, optics, particle physics and nuclear physics.
The editors welcome manuscripts on:
-General Physics: Statistical and Quantum Mechanics, etc.-
Gravitation and Astrophysics-
Elementary Particles and Fields-
Nuclear Physics-
Atomic, Molecular, and Optical Physics-
Quantum Information and Quantum Computation-
Fluid Dynamics, Nonlinear Dynamics, Chaos, and Complex Networks-
Plasma and Beam Physics-
Condensed Matter: Structure, etc.-
Condensed Matter: Electronic Properties, etc.-
Polymer, Soft Matter, Biological, and Interdisciplinary Physics.
CJP publishes regular research papers, feature articles and review papers.