Eco-driving control strategy for plug-in hybrid vehicle platoon with time-delay phenomenon compensation

IF 6.9 2区 环境科学与生态学 Q1 ENGINEERING, CHEMICAL Process Safety and Environmental Protection Pub Date : 2025-03-12 DOI:10.1016/j.psep.2025.107010
Shengru Chen , Ronghui Zhang , Qing Fu , Yuchuan Gu , Jing Zhao , Nengchao Lyu , Lei Zhang
{"title":"Eco-driving control strategy for plug-in hybrid vehicle platoon with time-delay phenomenon compensation","authors":"Shengru Chen ,&nbsp;Ronghui Zhang ,&nbsp;Qing Fu ,&nbsp;Yuchuan Gu ,&nbsp;Jing Zhao ,&nbsp;Nengchao Lyu ,&nbsp;Lei Zhang","doi":"10.1016/j.psep.2025.107010","DOIUrl":null,"url":null,"abstract":"<div><div>Promoting hybrid vehicles remains an effective strategy for reducing traffic carbon emissions prior to the complete transition to an all-electric transportation system. A well-designed control strategy for hybrid vehicles not only improves operational safety but also ensures that the engine operates along the optimal fuel consumption curve, reducing emissions without compromising safety. However, research on the control of hybrid vehicle platoons mostly neglects the time-delay phenomenon of the powertrain system. This paper proposes a control strategy with time delay compensation for hybrid vehicle platoons aimed at reducing carbon emissions while ensuring safety. First, the optimal velocity of each vehicle in the platoon is obtained through a multi-objective optimization function and used as the target speed for the torque split strategy. Next, the emission reduction strategy aims to make the engine operating point approach the minimum emission curve while simultaneously satisfying the vehicle’s power and velocity requirements. Finally, an optimal torque compensation strategy is introduced to mitigate the influence of the power system’s time-delay phenomenon on control accuracy. Numerical experiments are carried out to verify the effectiveness of the proposed control strategy. The proposed control strategy was tested under the typical urban driving conditions of the New European Driving Cycle, showing a reduction in both cumulative carbon emissions and peak emission levels, while also enhancing driving safety.</div></div>","PeriodicalId":20743,"journal":{"name":"Process Safety and Environmental Protection","volume":"197 ","pages":"Article 107010"},"PeriodicalIF":6.9000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Process Safety and Environmental Protection","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957582025002770","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Promoting hybrid vehicles remains an effective strategy for reducing traffic carbon emissions prior to the complete transition to an all-electric transportation system. A well-designed control strategy for hybrid vehicles not only improves operational safety but also ensures that the engine operates along the optimal fuel consumption curve, reducing emissions without compromising safety. However, research on the control of hybrid vehicle platoons mostly neglects the time-delay phenomenon of the powertrain system. This paper proposes a control strategy with time delay compensation for hybrid vehicle platoons aimed at reducing carbon emissions while ensuring safety. First, the optimal velocity of each vehicle in the platoon is obtained through a multi-objective optimization function and used as the target speed for the torque split strategy. Next, the emission reduction strategy aims to make the engine operating point approach the minimum emission curve while simultaneously satisfying the vehicle’s power and velocity requirements. Finally, an optimal torque compensation strategy is introduced to mitigate the influence of the power system’s time-delay phenomenon on control accuracy. Numerical experiments are carried out to verify the effectiveness of the proposed control strategy. The proposed control strategy was tested under the typical urban driving conditions of the New European Driving Cycle, showing a reduction in both cumulative carbon emissions and peak emission levels, while also enhancing driving safety.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Process Safety and Environmental Protection
Process Safety and Environmental Protection 环境科学-工程:化工
CiteScore
11.40
自引率
15.40%
发文量
929
审稿时长
8.0 months
期刊介绍: The Process Safety and Environmental Protection (PSEP) journal is a leading international publication that focuses on the publication of high-quality, original research papers in the field of engineering, specifically those related to the safety of industrial processes and environmental protection. The journal encourages submissions that present new developments in safety and environmental aspects, particularly those that show how research findings can be applied in process engineering design and practice. PSEP is particularly interested in research that brings fresh perspectives to established engineering principles, identifies unsolved problems, or suggests directions for future research. The journal also values contributions that push the boundaries of traditional engineering and welcomes multidisciplinary papers. PSEP's articles are abstracted and indexed by a range of databases and services, which helps to ensure that the journal's research is accessible and recognized in the academic and professional communities. These databases include ANTE, Chemical Abstracts, Chemical Hazards in Industry, Current Contents, Elsevier Engineering Information database, Pascal Francis, Web of Science, Scopus, Engineering Information Database EnCompass LIT (Elsevier), and INSPEC. This wide coverage facilitates the dissemination of the journal's content to a global audience interested in process safety and environmental engineering.
期刊最新文献
Closely packed CoS2/MoS2 nanoarray synthesized from MOF for overall water splitting A novel method to recover NaCl from molten salt chlorination residue and recycle NaCl back into molten salt chlorination process in TiCl4 production: Based on phase diagrams analysis Why does the industry need battery safety management system (BSMS)? Optimization of Phaeodactylum tricornutum cultivation for enhancing mariculture wastewater treatment and high value product recovery using Box–Behnken design Eco-driving control strategy for plug-in hybrid vehicle platoon with time-delay phenomenon compensation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1