Nima E. Gorji, Agnieszka Pieniążek, Alexandru Iancu, Malgorzata Norek, Christophe Couteau, Regis Deturche, Avtandil Tavkhelidze, Amiran Bibilashvili, Larissa Jangidze
{"title":"SEM, EDX, AFM, and XPS analysis of surface microstructure and chemical composition of nanograting patterns on silicon substrates","authors":"Nima E. Gorji, Agnieszka Pieniążek, Alexandru Iancu, Malgorzata Norek, Christophe Couteau, Regis Deturche, Avtandil Tavkhelidze, Amiran Bibilashvili, Larissa Jangidze","doi":"10.1007/s11082-025-08106-2","DOIUrl":null,"url":null,"abstract":"<div><p>This study conducted a comprehensive characterization of the surface and electronic properties of nanograting patterns on a silicon substrate using SEM, EDX, AFM, and XPS techniques. SEM images confirmed well-shaped and periodic nanograting patterns with determined depths (10 nm, 20 nm, or 30 nm) created by the laser interferometry lithography process. EDX elemental mapping confirmed that the surface of the patterns was predominantly silicon, with no significant contaminants such as oxygen or carbon present. AFM topography revealed a uniform surface roughness of up to 5 nm and well-aligned periodic patterns. XPS surface composition spectra, obtained after reactive etching, indicated no metal oxide formation or organic contamination and a clear Si spectrum. XPS scans for low binding energy (0–20 eV) were recorded to extract the valence band (VB) of the patterned surface for three different indent depths. The valence band offset from the valence band edge (E<sub>f</sub>-E<sub>v</sub>) was calculated to be 0.2 eV for 10 nm, 0.8 eV for 20 nm, and 0.4 eV for 30 nm indents, suggesting that a 20 nm indent depth provided the highest VB offset and thus was the preferred depth to obtain enhanced conductivity of the patterned surface. The comprehensive analysis highlighted the optimal indent depth for improved surface conductivity of nanograting-patterned silicon substrates.</p></div>","PeriodicalId":720,"journal":{"name":"Optical and Quantum Electronics","volume":"57 4","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11082-025-08106-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical and Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11082-025-08106-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This study conducted a comprehensive characterization of the surface and electronic properties of nanograting patterns on a silicon substrate using SEM, EDX, AFM, and XPS techniques. SEM images confirmed well-shaped and periodic nanograting patterns with determined depths (10 nm, 20 nm, or 30 nm) created by the laser interferometry lithography process. EDX elemental mapping confirmed that the surface of the patterns was predominantly silicon, with no significant contaminants such as oxygen or carbon present. AFM topography revealed a uniform surface roughness of up to 5 nm and well-aligned periodic patterns. XPS surface composition spectra, obtained after reactive etching, indicated no metal oxide formation or organic contamination and a clear Si spectrum. XPS scans for low binding energy (0–20 eV) were recorded to extract the valence band (VB) of the patterned surface for three different indent depths. The valence band offset from the valence band edge (Ef-Ev) was calculated to be 0.2 eV for 10 nm, 0.8 eV for 20 nm, and 0.4 eV for 30 nm indents, suggesting that a 20 nm indent depth provided the highest VB offset and thus was the preferred depth to obtain enhanced conductivity of the patterned surface. The comprehensive analysis highlighted the optimal indent depth for improved surface conductivity of nanograting-patterned silicon substrates.
期刊介绍:
Optical and Quantum Electronics provides an international forum for the publication of original research papers, tutorial reviews and letters in such fields as optical physics, optical engineering and optoelectronics. Special issues are published on topics of current interest.
Optical and Quantum Electronics is published monthly. It is concerned with the technology and physics of optical systems, components and devices, i.e., with topics such as: optical fibres; semiconductor lasers and LEDs; light detection and imaging devices; nanophotonics; photonic integration and optoelectronic integrated circuits; silicon photonics; displays; optical communications from devices to systems; materials for photonics (e.g. semiconductors, glasses, graphene); the physics and simulation of optical devices and systems; nanotechnologies in photonics (including engineered nano-structures such as photonic crystals, sub-wavelength photonic structures, metamaterials, and plasmonics); advanced quantum and optoelectronic applications (e.g. quantum computing, memory and communications, quantum sensing and quantum dots); photonic sensors and bio-sensors; Terahertz phenomena; non-linear optics and ultrafast phenomena; green photonics.