{"title":"Modularity Measures of Functional Brain Networks Predict Individual Differences in Long-Term Memory","authors":"Michael B. Zhou, Marvin M. Chun, Qi Lin","doi":"10.1111/ejn.70052","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Long-term memory (LTM) is crucial to daily functioning, and individuals show a wide range in LTM capacity. In this study, we ask: How does the brain's functional organization explain individual differences in LTM? We focused on two important, widely studied forms of LTM, general recognition and recollection memory. Inspired by recent work on graph theory and modularity of the brain, we explored how modularity measures of brain activity during encoding could predict individual differences in later LTM performance. Specifically, we examined two modularity measures that describe distinct aspects of network functioning: diversity—the extent a node connects with different modules—and locality—the extent a node has more connections within its own modules. Combining modularity measures and connectome-predictive modeling (CPM), a powerful framework for predicting individual differences in behavior from brain functional connectivity, we found that diversity and locality measures together significantly predicted individual differences in both general recognition and recollection memory. Modularity-based predictions were less strong than CPM models using only connectivity features. With regard to predictive neuroanatomy, we found that the default mode network was the most consistently selected brain network across our models. Our findings extend previous work on how the modularity of the brain is related to cognition and demonstrate that successful LTM is supported by critical connector hubs coordinating between and within networks during encoding. More broadly, they demonstrate the utility of a graph-based approach to reveal how modularity of brain networks relates to individual differences in LTM.</p>\n </div>","PeriodicalId":11993,"journal":{"name":"European Journal of Neuroscience","volume":"61 6","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ejn.70052","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Long-term memory (LTM) is crucial to daily functioning, and individuals show a wide range in LTM capacity. In this study, we ask: How does the brain's functional organization explain individual differences in LTM? We focused on two important, widely studied forms of LTM, general recognition and recollection memory. Inspired by recent work on graph theory and modularity of the brain, we explored how modularity measures of brain activity during encoding could predict individual differences in later LTM performance. Specifically, we examined two modularity measures that describe distinct aspects of network functioning: diversity—the extent a node connects with different modules—and locality—the extent a node has more connections within its own modules. Combining modularity measures and connectome-predictive modeling (CPM), a powerful framework for predicting individual differences in behavior from brain functional connectivity, we found that diversity and locality measures together significantly predicted individual differences in both general recognition and recollection memory. Modularity-based predictions were less strong than CPM models using only connectivity features. With regard to predictive neuroanatomy, we found that the default mode network was the most consistently selected brain network across our models. Our findings extend previous work on how the modularity of the brain is related to cognition and demonstrate that successful LTM is supported by critical connector hubs coordinating between and within networks during encoding. More broadly, they demonstrate the utility of a graph-based approach to reveal how modularity of brain networks relates to individual differences in LTM.
期刊介绍:
EJN is the journal of FENS and supports the international neuroscientific community by publishing original high quality research articles and reviews in all fields of neuroscience. In addition, to engage with issues that are of interest to the science community, we also publish Editorials, Meetings Reports and Neuro-Opinions on topics that are of current interest in the fields of neuroscience research and training in science. We have recently established a series of ‘Profiles of Women in Neuroscience’. Our goal is to provide a vehicle for publications that further the understanding of the structure and function of the nervous system in both health and disease and to provide a vehicle to engage the neuroscience community. As the official journal of FENS, profits from the journal are re-invested in the neuroscientific community through the activities of FENS.