Erick C. Castelli, Raphaela Neto Pereira, Gabriela Sato Paes, Heloisa S. Andrade, Marcel Rodrigues Ferreira, Ícaro Scalisse de Freitas Santos, Nicolas Vince, Nicholas R. Pollock, Paul J. Norman, Diogo Meyer
{"title":"kir-mapper: A Toolkit for Killer-Cell Immunoglobulin-Like Receptor (KIR) Genotyping From Short-Read Second-Generation Sequencing Data","authors":"Erick C. Castelli, Raphaela Neto Pereira, Gabriela Sato Paes, Heloisa S. Andrade, Marcel Rodrigues Ferreira, Ícaro Scalisse de Freitas Santos, Nicolas Vince, Nicholas R. Pollock, Paul J. Norman, Diogo Meyer","doi":"10.1111/tan.70092","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Killer cell immunoglobulin-like receptors (KIRs) regulate natural killer (NK) cell responses by activating or inhibiting their functions. Genotyping KIR genes from short-read second-generation sequencing data remains challenging as cross-alignments among genes and alignment failure arise from gene similarities and extreme polymorphism. Several bioinformatics pipelines and programs, including PING and T1K, have been developed to analyse KIR diversity. We found discordant results among tools in a systematic comparison using the same dataset. Additionally, they do not provide SNPs in the context of the reference genome, making them unsuitable for whole-genome association studies. Here, we present kir-mapper, a toolkit to analyse KIR genes from short-read sequencing, focusing on detecting KIR alleles, copy number variation, as well as SNPs and InDels in the context of the hg38 reference genome. kir-mapper can be used with whole-genome sequencing (WGS), whole-exome sequencing (WES) and sequencing data generated after probe-based capture methods. It presents strategies for phasing SNPs and InDels within and among genes, reducing the number of ambiguities reported by other methods. We have applied kir-mapper and other tools to data from various sources (WGS, WES) in worldwide samples and compared the results. Using long-read data as a truth set, we found that WGS kir-mapper analyses provided more accurate genotype calls than PING and T1K. For WES, kir-mapper provides more accurate genotype calls than T1K for some genes, particularly highly polymorphic ones (<i>KIR3DL3</i> and <i>KIR3DL2</i>). This comparison highlights that the choice of method has to be considered as a function of the available data type and the targeted genes. kir-mapper is available at the GitHub repository (https://github.com/erickcastelli/kir-mapper/).</p>\n </div>","PeriodicalId":13172,"journal":{"name":"HLA","volume":"105 3","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HLA","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/tan.70092","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Killer cell immunoglobulin-like receptors (KIRs) regulate natural killer (NK) cell responses by activating or inhibiting their functions. Genotyping KIR genes from short-read second-generation sequencing data remains challenging as cross-alignments among genes and alignment failure arise from gene similarities and extreme polymorphism. Several bioinformatics pipelines and programs, including PING and T1K, have been developed to analyse KIR diversity. We found discordant results among tools in a systematic comparison using the same dataset. Additionally, they do not provide SNPs in the context of the reference genome, making them unsuitable for whole-genome association studies. Here, we present kir-mapper, a toolkit to analyse KIR genes from short-read sequencing, focusing on detecting KIR alleles, copy number variation, as well as SNPs and InDels in the context of the hg38 reference genome. kir-mapper can be used with whole-genome sequencing (WGS), whole-exome sequencing (WES) and sequencing data generated after probe-based capture methods. It presents strategies for phasing SNPs and InDels within and among genes, reducing the number of ambiguities reported by other methods. We have applied kir-mapper and other tools to data from various sources (WGS, WES) in worldwide samples and compared the results. Using long-read data as a truth set, we found that WGS kir-mapper analyses provided more accurate genotype calls than PING and T1K. For WES, kir-mapper provides more accurate genotype calls than T1K for some genes, particularly highly polymorphic ones (KIR3DL3 and KIR3DL2). This comparison highlights that the choice of method has to be considered as a function of the available data type and the targeted genes. kir-mapper is available at the GitHub repository (https://github.com/erickcastelli/kir-mapper/).
期刊介绍:
HLA, the journal, publishes articles on various aspects of immunogenetics. These include the immunogenetics of cell surface antigens, the ontogeny and phylogeny of the immune system, the immunogenetics of cell interactions, the functional aspects of cell surface molecules and their natural ligands, and the role of tissue antigens in immune reactions. Additionally, the journal covers experimental and clinical transplantation, the relationships between normal tissue antigens and tumor-associated antigens, the genetic control of immune response and disease susceptibility, and the biochemistry and molecular biology of alloantigens and leukocyte differentiation. Manuscripts on molecules expressed on lymphoid cells, myeloid cells, platelets, and non-lineage-restricted antigens are welcomed. Lastly, the journal focuses on the immunogenetics of histocompatibility antigens in both humans and experimental animals, including their tissue distribution, regulation, and expression in normal and malignant cells, as well as the use of antigens as markers for disease.