Giuseppe Floresta, Alberto Granzotto, Vincenzo Patamia, Davide Arillotta, Gabriele D. Papanti, Amira Guirguis, John M. Corkery, Giovanni Martinotti, Stefano L. Sensi, Fabrizio Schifano
{"title":"Xylazine as an emerging new psychoactive substance; focuses on both 5-HT7 and κ-opioid receptors' molecular interactions and isosteric replacement","authors":"Giuseppe Floresta, Alberto Granzotto, Vincenzo Patamia, Davide Arillotta, Gabriele D. Papanti, Amira Guirguis, John M. Corkery, Giovanni Martinotti, Stefano L. Sensi, Fabrizio Schifano","doi":"10.1002/ardp.202500041","DOIUrl":null,"url":null,"abstract":"<p>Xylazine, traditionally used as a veterinary sedative, has recently emerged as a new psychoactive substance, being typically ingested in combination with fentanyl derivatives and hence raising significant public health concerns. Despite its increasing prevalence, little is known about its molecular interactions with human neuroreceptors, specifically the serotonin 7 (5-HT<sub>7</sub>R) and kappa-opioid (KOR) receptors, which play critical roles in mood regulation, consciousness and nociception. Hence, the binding affinity and molecular interactions of xylazine with both 5-HT<sub>7</sub>R and KOR through docking simulations and molecular dynamics calculations were investigated. These computational approaches revealed critical insights into receptor binding motifs and highlighted structural modifications that could enhance receptor affinity. The isosteric replacements within the xylazine structure to improve its binding efficacy were assessed, demonstrating that minimal structural modifications can potentiate its interaction with 5-HT<sub>7</sub>R and KOR. These findings may well advance our understanding of xylazine's mechanism of action, possibly contributing to identifying suitable treatment/management approaches in treating xylazine-related overdoses.</p>","PeriodicalId":128,"journal":{"name":"Archiv der Pharmazie","volume":"358 3","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ardp.202500041","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Pharmazie","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ardp.202500041","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Xylazine, traditionally used as a veterinary sedative, has recently emerged as a new psychoactive substance, being typically ingested in combination with fentanyl derivatives and hence raising significant public health concerns. Despite its increasing prevalence, little is known about its molecular interactions with human neuroreceptors, specifically the serotonin 7 (5-HT7R) and kappa-opioid (KOR) receptors, which play critical roles in mood regulation, consciousness and nociception. Hence, the binding affinity and molecular interactions of xylazine with both 5-HT7R and KOR through docking simulations and molecular dynamics calculations were investigated. These computational approaches revealed critical insights into receptor binding motifs and highlighted structural modifications that could enhance receptor affinity. The isosteric replacements within the xylazine structure to improve its binding efficacy were assessed, demonstrating that minimal structural modifications can potentiate its interaction with 5-HT7R and KOR. These findings may well advance our understanding of xylazine's mechanism of action, possibly contributing to identifying suitable treatment/management approaches in treating xylazine-related overdoses.
期刊介绍:
Archiv der Pharmazie - Chemistry in Life Sciences is an international journal devoted to research and development in all fields of pharmaceutical and medicinal chemistry. Emphasis is put on papers combining synthetic organic chemistry, structural biology, molecular modelling, bioorganic chemistry, natural products chemistry, biochemistry or analytical methods with pharmaceutical or medicinal aspects such as biological activity. The focus of this journal is put on original research papers, but other scientifically valuable contributions (e.g. reviews, minireviews, highlights, symposia contributions, discussions, and essays) are also welcome.