{"title":"Emplacement of monomict breccia and crater size estimate at the Dhala impact structure, India","authors":"Sonal Tiwari, Gaurav Joshi, Pradyut Phukon, Amar Agarwal, Mamilla Venkateshwarlu","doi":"10.1111/maps.14323","DOIUrl":null,"url":null,"abstract":"<p>At the Dhala impact structure, the monomict breccia and the impact melt rock outcrops are present in proximity. Generally, these impactite lithologies are formed by different mechanisms and in different parts of the crater. The emplacement setting of impact melt rocks at Dhala has been well studied. Therefore, we studied the emplacement of monomict breccia using field, microscopic, and magnetic fabric investigations. Our results show that the intensities of the rock magnetic parameters in monomict breccia are comparable with the unshocked target granitoid at Dhala. Thus, the magnetic fabrics developed during pre-impact processes and were not altered due to impact. The absence of the reorientation of magnetic fabrics indicates that the peak shock pressures were below 0.5 GPa. Such shock pressures typically exist near the crater wall/floor or outside the crater. Moreover, there is no local variation in the orientations of magnetic fabrics at different locations in the same outcrop. Thus, the monomict breccia was not displaced from their pre-impact position. Based on the shock barometry and absence of displacement, we propose that the present-day annular outcrops of monomict breccia are located just outside the final crater. Furthermore, the monomict breccia annular outcrop ring has an internal diameter of ~4.5 km and is juxtaposed with impact melt rocks, which formed within the crater (previous studies). We, thus, suggest that the present-day crater diameter is ~4.5 km.</p>","PeriodicalId":18555,"journal":{"name":"Meteoritics & Planetary Science","volume":"60 3","pages":"663-679"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meteoritics & Planetary Science","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/maps.14323","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
At the Dhala impact structure, the monomict breccia and the impact melt rock outcrops are present in proximity. Generally, these impactite lithologies are formed by different mechanisms and in different parts of the crater. The emplacement setting of impact melt rocks at Dhala has been well studied. Therefore, we studied the emplacement of monomict breccia using field, microscopic, and magnetic fabric investigations. Our results show that the intensities of the rock magnetic parameters in monomict breccia are comparable with the unshocked target granitoid at Dhala. Thus, the magnetic fabrics developed during pre-impact processes and were not altered due to impact. The absence of the reorientation of magnetic fabrics indicates that the peak shock pressures were below 0.5 GPa. Such shock pressures typically exist near the crater wall/floor or outside the crater. Moreover, there is no local variation in the orientations of magnetic fabrics at different locations in the same outcrop. Thus, the monomict breccia was not displaced from their pre-impact position. Based on the shock barometry and absence of displacement, we propose that the present-day annular outcrops of monomict breccia are located just outside the final crater. Furthermore, the monomict breccia annular outcrop ring has an internal diameter of ~4.5 km and is juxtaposed with impact melt rocks, which formed within the crater (previous studies). We, thus, suggest that the present-day crater diameter is ~4.5 km.
期刊介绍:
First issued in 1953, the journal publishes research articles describing the latest results of new studies, invited reviews of major topics in planetary science, editorials on issues of current interest in the field, and book reviews. The publications are original, not considered for publication elsewhere, and undergo peer-review. The topics include the origin and history of the solar system, planets and natural satellites, interplanetary dust and interstellar medium, lunar samples, meteors, and meteorites, asteroids, comets, craters, and tektites. Our authors and editors are professional scientists representing numerous disciplines, including astronomy, astrophysics, physics, geophysics, chemistry, isotope geochemistry, mineralogy, earth science, geology, and biology. MAPS has subscribers in over 40 countries. Fifty percent of MAPS'' readers are based outside the USA. The journal is available in hard copy and online.