Dynamic Mud Deposition Along the Fluvial–Tidal Transition Zone in the Waihou River, Aotearoa New Zealand

IF 3.5 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Journal of Geophysical Research: Earth Surface Pub Date : 2025-03-17 DOI:10.1029/2024JF007817
A. D. La Croix, B. Roche, J. C. Mullarney
{"title":"Dynamic Mud Deposition Along the Fluvial–Tidal Transition Zone in the Waihou River, Aotearoa New Zealand","authors":"A. D. La Croix,&nbsp;B. Roche,&nbsp;J. C. Mullarney","doi":"10.1029/2024JF007817","DOIUrl":null,"url":null,"abstract":"<p>The fluvial–tidal transition zone (FTT) is a critical interface where complex interactions between river flow, tides, and sedimentation shape geomorphic systems and influence the dynamics of aquatic environments. However, few previous studies have integrated real-time hydrodynamic data with sedimentary deposits. In particular, the range of depositional conditions over which mud accumulates remains poorly constrained, and little is understood about how these deposits are preserved in the stratigraphic record. To address this knowledge gap, we examined co-located hydrodynamic instrument data and sedimentary deposits from the lower Waihou River, Aotearoa New Zealand. Results reveal that “dynamic mud” events, including fluid mud and rapidly deposited mud, dominate the spatial and temporal record, with few “static mud” events in which mud is deposited through gravitational settling. We suggest that dynamic mud conditions with the potential for deposition may occur throughout the tidal cycle, although cyclic tidal successions are never fully preserved. Many of the trends in sedimentation observed in studies of larger systems are not present in this small muddy river system, indicating the significance of climatic and river-flow characteristics on the sedimentary record. This work underscores the importance of studying systems of multiple sizes across diverse climatic regimes to establish holistic facies models to reconstruct geological history accurately.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"130 3","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JF007817","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Earth Surface","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JF007817","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The fluvial–tidal transition zone (FTT) is a critical interface where complex interactions between river flow, tides, and sedimentation shape geomorphic systems and influence the dynamics of aquatic environments. However, few previous studies have integrated real-time hydrodynamic data with sedimentary deposits. In particular, the range of depositional conditions over which mud accumulates remains poorly constrained, and little is understood about how these deposits are preserved in the stratigraphic record. To address this knowledge gap, we examined co-located hydrodynamic instrument data and sedimentary deposits from the lower Waihou River, Aotearoa New Zealand. Results reveal that “dynamic mud” events, including fluid mud and rapidly deposited mud, dominate the spatial and temporal record, with few “static mud” events in which mud is deposited through gravitational settling. We suggest that dynamic mud conditions with the potential for deposition may occur throughout the tidal cycle, although cyclic tidal successions are never fully preserved. Many of the trends in sedimentation observed in studies of larger systems are not present in this small muddy river system, indicating the significance of climatic and river-flow characteristics on the sedimentary record. This work underscores the importance of studying systems of multiple sizes across diverse climatic regimes to establish holistic facies models to reconstruct geological history accurately.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Geophysical Research: Earth Surface
Journal of Geophysical Research: Earth Surface Earth and Planetary Sciences-Earth-Surface Processes
CiteScore
6.30
自引率
10.30%
发文量
162
期刊最新文献
A Geometric Algorithm to Identify River Meander Bends:1. Effect of Perspective A Geometric Algorithm to Identify River Meander Bends: 2. Test for Characteristic Shapes Dynamic Mud Deposition Along the Fluvial–Tidal Transition Zone in the Waihou River, Aotearoa New Zealand Linking Landslide Patterns to Transient Landscapes in the Northern Colombian Andes Permeability Anisotropy of Foliated Glacier Ice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1