Predicting Performance of Hall Effect Ion Source Using Machine Learning

IF 6.8 Q1 AUTOMATION & CONTROL SYSTEMS Advanced intelligent systems (Weinheim an der Bergstrasse, Germany) Pub Date : 2025-03-16 DOI:10.1002/aisy.202570011
Jaehong Park, Guentae Doh, Dongho Lee, Youngho Kim, Changmin Shin, Su-Jin Shin, Young-Chul Ghim, Sanghoo Park, Wonho Choe
{"title":"Predicting Performance of Hall Effect Ion Source Using Machine Learning","authors":"Jaehong Park,&nbsp;Guentae Doh,&nbsp;Dongho Lee,&nbsp;Youngho Kim,&nbsp;Changmin Shin,&nbsp;Su-Jin Shin,&nbsp;Young-Chul Ghim,&nbsp;Sanghoo Park,&nbsp;Wonho Choe","doi":"10.1002/aisy.202570011","DOIUrl":null,"url":null,"abstract":"<p><b>Hall Effect Ion Source</b>\n </p><p>In article number 2400555, Wonho Choe and co-workers introduce a machine learning-based approach to accurately predicting the performance of Hall thrusters, a critical technology for space propulsion and industrial ion beam sources. By utilizing an ensemble of neural networks trained on 18,000 simulation datasets validated by experiments, the model achieves high accuracy in thrust and discharge current predictions, enabling the rapid development of optimized, high-efficiency thrusters with shorter design cycles.\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":93858,"journal":{"name":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","volume":"7 3","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aisy.202570011","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced intelligent systems (Weinheim an der Bergstrasse, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aisy.202570011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Hall Effect Ion Source

In article number 2400555, Wonho Choe and co-workers introduce a machine learning-based approach to accurately predicting the performance of Hall thrusters, a critical technology for space propulsion and industrial ion beam sources. By utilizing an ensemble of neural networks trained on 18,000 simulation datasets validated by experiments, the model achieves high accuracy in thrust and discharge current predictions, enabling the rapid development of optimized, high-efficiency thrusters with shorter design cycles.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
4 weeks
期刊最新文献
Issue Information Printed Wearable Sweat Rate Sensor for Continuous In Situ Perspiration Measurement Haptic In-Sensor Computing Device Based on CNT/PDMS Nanocomposite Physical Reservoir SuperResNET: Model-Free Single-Molecule Network Analysis Software Achieves Molecular Resolution of Nup96 Predicting Performance of Hall Effect Ion Source Using Machine Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1