Nicolas Moreno, Kirill Korneev, Alexey Semenov, Alper Topuz, Thomas John, Minne Paul Lettinga, Marco Ellero, Christian Wagner, Dmitry A Fedosov
{"title":"Aggregation and disaggregation of red blood cells: depletion versus bridging.","authors":"Nicolas Moreno, Kirill Korneev, Alexey Semenov, Alper Topuz, Thomas John, Minne Paul Lettinga, Marco Ellero, Christian Wagner, Dmitry A Fedosov","doi":"10.1016/j.bpj.2025.03.007","DOIUrl":null,"url":null,"abstract":"<p><p>The aggregation of red blood cells (RBCs) is a complex phenomenon that strongly impacts blood flow and tissue perfusion. Despite extensive research for more than 50 years, physical mechanisms that govern RBC aggregation are still under debate. Two proposed mechanisms are based on bridging and depletion interactions between RBCs due to the presence of macromolecules in blood plasma. The bridging hypothesis assumes the formation of bonds between RBCs through adsorbing macromolecules, while the depletion mechanism results from the exclusion of macromolecules from the inter-cellular space, leading to effective attraction. Existing experimental studies generally cannot differentiate between these two aggregation mechanisms, though several recent investigations suggest concurrent involvement of the both mechanisms. We explore dynamic aggregation and disaggregation of two RBCs using three simulation models: a potential-based model mimicking depletion interactions, a bridging model with immobile bonds, and a new bridging model with mobile bonds which can slide along RBC membranes. Simulation results indicate that dynamic aggregation of RBCs primarily arises from depletion interactions, while disaggregation of RBCs involves both mechanisms. The bridging model with mobile bonds reproduces well the corresponding experimental data, offering insights into the interplay between bridging and depletion interactions and providing a framework for studying similar interactions between other biological cells.</p>","PeriodicalId":8922,"journal":{"name":"Biophysical journal","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bpj.2025.03.007","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The aggregation of red blood cells (RBCs) is a complex phenomenon that strongly impacts blood flow and tissue perfusion. Despite extensive research for more than 50 years, physical mechanisms that govern RBC aggregation are still under debate. Two proposed mechanisms are based on bridging and depletion interactions between RBCs due to the presence of macromolecules in blood plasma. The bridging hypothesis assumes the formation of bonds between RBCs through adsorbing macromolecules, while the depletion mechanism results from the exclusion of macromolecules from the inter-cellular space, leading to effective attraction. Existing experimental studies generally cannot differentiate between these two aggregation mechanisms, though several recent investigations suggest concurrent involvement of the both mechanisms. We explore dynamic aggregation and disaggregation of two RBCs using three simulation models: a potential-based model mimicking depletion interactions, a bridging model with immobile bonds, and a new bridging model with mobile bonds which can slide along RBC membranes. Simulation results indicate that dynamic aggregation of RBCs primarily arises from depletion interactions, while disaggregation of RBCs involves both mechanisms. The bridging model with mobile bonds reproduces well the corresponding experimental data, offering insights into the interplay between bridging and depletion interactions and providing a framework for studying similar interactions between other biological cells.
期刊介绍:
BJ publishes original articles, letters, and perspectives on important problems in modern biophysics. The papers should be written so as to be of interest to a broad community of biophysicists. BJ welcomes experimental studies that employ quantitative physical approaches for the study of biological systems, including or spanning scales from molecule to whole organism. Experimental studies of a purely descriptive or phenomenological nature, with no theoretical or mechanistic underpinning, are not appropriate for publication in BJ. Theoretical studies should offer new insights into the understanding ofexperimental results or suggest new experimentally testable hypotheses. Articles reporting significant methodological or technological advances, which have potential to open new areas of biophysical investigation, are also suitable for publication in BJ. Papers describing improvements in accuracy or speed of existing methods or extra detail within methods described previously are not suitable for BJ.