{"title":"Diplonemid protists possess exotic endomembrane machinery, impacting models of membrane trafficking in modern and ancient eukaryotes.","authors":"Kristína Záhonová, Julius Lukeš, Joel B Dacks","doi":"10.1016/j.cub.2025.02.032","DOIUrl":null,"url":null,"abstract":"<p><p>Diplonemids are among the most abundant and species-rich protists in the oceans. Marine heterotrophic flagellates, including diplonemids, have been suggested to play important roles in global biogeochemical cycles. Diplonemids are also the sister taxon of kinetoplastids, home to trypanosomatid parasites of global health importance, and thus are informative about the evolution of kinetoplastid biology. However, the genomic and cellular complement that underpins diplonemids' highly successful lifestyle is underexplored. At the same time, our framework describing cellular processes may not be as broadly applicable as presumed, as it is largely derived from animal and fungal model organisms, a small subset of extant eukaryotic diversity. In addition to uniquely evolved machinery in animals and fungi, there exist components with sporadic (i.e., \"patchy\") distributions across other eukaryotes. A most intriguing subset are components (\"jötnarlogs\") stochastically present in a wide range of eukaryotes but lost in animal and/or fungal models. Such components are considered exotic curiosities but may be relevant to inferences about the complexity of the last eukaryotic common ancestor (LECA) and frameworks of modern cell biology. Here, we use comparative genomics and phylogenetics to comprehensively assess the membrane-trafficking system of diplonemids. They possess several proteins thought of as kinetoplastid specific, as well as an extensive set of patchy proteins, including jötnarlogs. Diplonemids apparently function with endomembrane machinery distinct from existing cell biological models but comparable with other free-living heterotrophic protists, highlighting the importance of including such exotic components when considering different models of ancient eukaryotic genomic complexity and the cell biology of non-opisthokont organisms.</p>","PeriodicalId":11359,"journal":{"name":"Current Biology","volume":" ","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cub.2025.02.032","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Diplonemids are among the most abundant and species-rich protists in the oceans. Marine heterotrophic flagellates, including diplonemids, have been suggested to play important roles in global biogeochemical cycles. Diplonemids are also the sister taxon of kinetoplastids, home to trypanosomatid parasites of global health importance, and thus are informative about the evolution of kinetoplastid biology. However, the genomic and cellular complement that underpins diplonemids' highly successful lifestyle is underexplored. At the same time, our framework describing cellular processes may not be as broadly applicable as presumed, as it is largely derived from animal and fungal model organisms, a small subset of extant eukaryotic diversity. In addition to uniquely evolved machinery in animals and fungi, there exist components with sporadic (i.e., "patchy") distributions across other eukaryotes. A most intriguing subset are components ("jötnarlogs") stochastically present in a wide range of eukaryotes but lost in animal and/or fungal models. Such components are considered exotic curiosities but may be relevant to inferences about the complexity of the last eukaryotic common ancestor (LECA) and frameworks of modern cell biology. Here, we use comparative genomics and phylogenetics to comprehensively assess the membrane-trafficking system of diplonemids. They possess several proteins thought of as kinetoplastid specific, as well as an extensive set of patchy proteins, including jötnarlogs. Diplonemids apparently function with endomembrane machinery distinct from existing cell biological models but comparable with other free-living heterotrophic protists, highlighting the importance of including such exotic components when considering different models of ancient eukaryotic genomic complexity and the cell biology of non-opisthokont organisms.
期刊介绍:
Current Biology is a comprehensive journal that showcases original research in various disciplines of biology. It provides a platform for scientists to disseminate their groundbreaking findings and promotes interdisciplinary communication. The journal publishes articles of general interest, encompassing diverse fields of biology. Moreover, it offers accessible editorial pieces that are specifically designed to enlighten non-specialist readers.