A novel antimicrobial peptide Larimicin78-102 from large yellow croaker (Larimichthys crocea) shows potent antibacterial activity in vitro and enhances resistance to vibrio fluvialis infection in vivo.
{"title":"A novel antimicrobial peptide Larimicin<sub>78-102</sub> from large yellow croaker (Larimichthys crocea) shows potent antibacterial activity in vitro and enhances resistance to vibrio fluvialis infection in vivo.","authors":"Zhenzhen Zhou, Fangyi Chen, Hua Hao, Ke-Jian Wang","doi":"10.1016/j.fsi.2025.110279","DOIUrl":null,"url":null,"abstract":"<p><p>Antimicrobial peptides (AMPs) are considered a key component of innate immunity, playing a vital role in host defense. In the study, a novel functional gene, named Larimicin, was identified from large yellow croaker Larimichthys crocea. The Larimicin gene was widely distributed in multiple tissues of healthy L. crocea and was significantly induced in the liver after Vibrio alginolyticus or Vibrio parahaemolyticus infection. Larimicin<sub>78-102</sub>, a truncated peptide derived from Larimicin, showed broad-spectrum antimicrobial activity and a binding affinity with LPS. It exhibited effective bactericidal activity against the common aquatic pathogens Vibrio fluvialis, Pseudomonas fluorescens, and Pseudomonas putida. It also showed anti-biofilm activity against three aquatic pathogens. Moreover, Larimicin<sub>78-102</sub> disrupted the integrity of the outer and inner membranes, resulting in ATP leakage and intracellular ROS accumulation, which ultimately led to bacterial cell death. Larimicin<sub>78-102</sub> exhibited good thermal stability and cation tolerance, with no obvious cytotoxicity or hemolytic activity. Notably, Larimicin<sub>78-102</sub> significantly improved the survival rate of L. crocea infected with V. fluvialis, raising it to 95%, indicating its anti-infective role in vivo. In addition, Larimicin<sub>78-102</sub> significantly reduced the expression of the pro-inflammatory cytokines TNF-α and IL-1β, while up-regulating the anti-inflammatory factor IL-4 mRNA level. It also elevated the expression levels of piscidin, hepcidin, and lysozyme, as well as enhanced the enzymatic activity of lysozyme. Taken together, Larimicin<sub>78-102</sub> is a potential antibacterial agent for use in aquaculture to combat V. fluvialis infection diseases in the future.</p>","PeriodicalId":12127,"journal":{"name":"Fish & shellfish immunology","volume":" ","pages":"110279"},"PeriodicalIF":4.1000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fish & shellfish immunology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.fsi.2025.110279","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FISHERIES","Score":null,"Total":0}
引用次数: 0
Abstract
Antimicrobial peptides (AMPs) are considered a key component of innate immunity, playing a vital role in host defense. In the study, a novel functional gene, named Larimicin, was identified from large yellow croaker Larimichthys crocea. The Larimicin gene was widely distributed in multiple tissues of healthy L. crocea and was significantly induced in the liver after Vibrio alginolyticus or Vibrio parahaemolyticus infection. Larimicin78-102, a truncated peptide derived from Larimicin, showed broad-spectrum antimicrobial activity and a binding affinity with LPS. It exhibited effective bactericidal activity against the common aquatic pathogens Vibrio fluvialis, Pseudomonas fluorescens, and Pseudomonas putida. It also showed anti-biofilm activity against three aquatic pathogens. Moreover, Larimicin78-102 disrupted the integrity of the outer and inner membranes, resulting in ATP leakage and intracellular ROS accumulation, which ultimately led to bacterial cell death. Larimicin78-102 exhibited good thermal stability and cation tolerance, with no obvious cytotoxicity or hemolytic activity. Notably, Larimicin78-102 significantly improved the survival rate of L. crocea infected with V. fluvialis, raising it to 95%, indicating its anti-infective role in vivo. In addition, Larimicin78-102 significantly reduced the expression of the pro-inflammatory cytokines TNF-α and IL-1β, while up-regulating the anti-inflammatory factor IL-4 mRNA level. It also elevated the expression levels of piscidin, hepcidin, and lysozyme, as well as enhanced the enzymatic activity of lysozyme. Taken together, Larimicin78-102 is a potential antibacterial agent for use in aquaculture to combat V. fluvialis infection diseases in the future.
期刊介绍:
Fish and Shellfish Immunology rapidly publishes high-quality, peer-refereed contributions in the expanding fields of fish and shellfish immunology. It presents studies on the basic mechanisms of both the specific and non-specific defense systems, the cells, tissues, and humoral factors involved, their dependence on environmental and intrinsic factors, response to pathogens, response to vaccination, and applied studies on the development of specific vaccines for use in the aquaculture industry.