Activation of central and peripheral transient receptor potential melastatin 8 increases susceptibility to spreading depolarization and facilitates trigeminal neuroinflammation.
{"title":"Activation of central and peripheral transient receptor potential melastatin 8 increases susceptibility to spreading depolarization and facilitates trigeminal neuroinflammation.","authors":"Tzu-Ting Liu, Pin-Yu Chen, Chyun-Yea Tseng, Yun-Ning Chen, Jian-Bang Chen, Tz-Han Ni, Shuu-Jiun Wang, Shih-Pin Chen, Jiin-Cherng Yen","doi":"10.1186/s10194-025-01997-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Transient receptor potential melastatin 8 (TRPM8), a gene encoding a nonselective cation channel responsive to cold stimuli, has been implicated in migraine susceptibility. Despite this association, the role of TRPM8 to migraine pathogenesis remains elusive. This study aims to elucidate the potential role of TRPM8 in migraine pathophysiology.</p><p><strong>Methods: </strong>TRPM8 expression in the cortex and primary trigeminal ganglion (TG) cells was analyzed via immunostaining. The central role of TRPM8 was assessed using a spreading depolarization (SD) model, where intracerebroventricular injections or topical applications of TRPM8 agonists and antagonists were administered to rats to investigate their effects on KCl-evoked SD and SD-induced cortical inflammation. The peripheral role of TRPM8 in migraine was evaluated using primary cultures of rat TG cells by analyzing the effects of TRPM8 activation on calcitonin gene-related peptide (CGRP) expression, release, and trigeminal neuroinflammation.</p><p><strong>Results: </strong>TRPM8 was homogeneously distributed in the cerebral cortex, predominantly co-localizing with cortical neurons. Activation of cortical TRPM8 increased the frequency of KCl-evoked SD and exacerbated SD-induced cortical inflammation. Interestingly. Interestingly, inhibition of cerebral TRPM8 had negligible effects. In TG primary cultures, TRPM8 activation upregulated CGRP expression and release and induced cyclooxygenase-2 (Cox2) upregulation via a calmodulin kinase II (CaMKII)-dependent mechanism.</p><p><strong>Conclusions: </strong>TRPM8 activation increased susceptibility to SD and facilitated the effects of CGRP and trigeminal neuroinflammation, implicating that TRPM8 may contribute to migraine pathophysiology through central and peripheral mechanisms.</p>","PeriodicalId":16013,"journal":{"name":"Journal of Headache and Pain","volume":"26 1","pages":"55"},"PeriodicalIF":7.3000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11907788/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Headache and Pain","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s10194-025-01997-2","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Transient receptor potential melastatin 8 (TRPM8), a gene encoding a nonselective cation channel responsive to cold stimuli, has been implicated in migraine susceptibility. Despite this association, the role of TRPM8 to migraine pathogenesis remains elusive. This study aims to elucidate the potential role of TRPM8 in migraine pathophysiology.
Methods: TRPM8 expression in the cortex and primary trigeminal ganglion (TG) cells was analyzed via immunostaining. The central role of TRPM8 was assessed using a spreading depolarization (SD) model, where intracerebroventricular injections or topical applications of TRPM8 agonists and antagonists were administered to rats to investigate their effects on KCl-evoked SD and SD-induced cortical inflammation. The peripheral role of TRPM8 in migraine was evaluated using primary cultures of rat TG cells by analyzing the effects of TRPM8 activation on calcitonin gene-related peptide (CGRP) expression, release, and trigeminal neuroinflammation.
Results: TRPM8 was homogeneously distributed in the cerebral cortex, predominantly co-localizing with cortical neurons. Activation of cortical TRPM8 increased the frequency of KCl-evoked SD and exacerbated SD-induced cortical inflammation. Interestingly. Interestingly, inhibition of cerebral TRPM8 had negligible effects. In TG primary cultures, TRPM8 activation upregulated CGRP expression and release and induced cyclooxygenase-2 (Cox2) upregulation via a calmodulin kinase II (CaMKII)-dependent mechanism.
Conclusions: TRPM8 activation increased susceptibility to SD and facilitated the effects of CGRP and trigeminal neuroinflammation, implicating that TRPM8 may contribute to migraine pathophysiology through central and peripheral mechanisms.
期刊介绍:
The Journal of Headache and Pain, a peer-reviewed open-access journal published under the BMC brand, a part of Springer Nature, is dedicated to researchers engaged in all facets of headache and related pain syndromes. It encompasses epidemiology, public health, basic science, translational medicine, clinical trials, and real-world data.
With a multidisciplinary approach, The Journal of Headache and Pain addresses headache medicine and related pain syndromes across all medical disciplines. It particularly encourages submissions in clinical, translational, and basic science fields, focusing on pain management, genetics, neurology, and internal medicine. The journal publishes research articles, reviews, letters to the Editor, as well as consensus articles and guidelines, aimed at promoting best practices in managing patients with headaches and related pain.