Drug-Induced Gingival Enlargement: A Comparative Study on the Effect of Phenytoin, Gabapentin, and Cyclosporin on Gingival Fibroblast Cells.

IF 2.4 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Biotechnology Pub Date : 2025-03-14 DOI:10.1007/s12033-025-01397-6
K M Veena, V Mohammed Hasil, Prashanth Shenoy, R Abhijna Ballal, Sanath Kumar Shetty
{"title":"Drug-Induced Gingival Enlargement: A Comparative Study on the Effect of Phenytoin, Gabapentin, and Cyclosporin on Gingival Fibroblast Cells.","authors":"K M Veena, V Mohammed Hasil, Prashanth Shenoy, R Abhijna Ballal, Sanath Kumar Shetty","doi":"10.1007/s12033-025-01397-6","DOIUrl":null,"url":null,"abstract":"<p><p>Drug-induced gingival enlargement (DIGE) is an abnormal overgrowth that may occur as a side effect in some patients when calcium channel blockers, immunosuppressants, or anticonvulsants are taken. The prevalence of DIGE was shown to be 70% for phenytoin (30% for other anticonvulsant medicines) and 50-80% for cyclosporine. The usage of these medications is increasing as new indications emerge. These drugs act through a common mechanism of action at the cellular level by inhibiting intracellular calcium influx. DIGE is characterized by the presence of varied quantities of inflammatory infiltrates, primarily plasma cells, and an excessive build-up of extracellular matrix like-collagen. Fibroblasts, the cells responsible for collagen synthesis, may become hyperactive, leading to the excessive production of collagen fibers. This increased collagen content can result in the enlargement of gingival tissues. As collagen deposits increase, it hinders normal oral care routines, masticatory processes, and esthetics. In this study, we compared the cytotoxicity of phenytoin, gabapentin, and cyclosporine on gingival fibroblast cells using the methyl thiazolyl-tetrazolium assay to understand their effect on gingival fibroblast cells. Phenytoin had the greatest half-maximal inhibitory concentration (IC50) with a value of 305.78 µg/ml, followed by gabapentin with a value of 260.44 µg/ml and cyclosporin with a value of 243.79 µg/ml. Understanding the cytotoxic thresholds of these medications is essential for improving patient outcomes and minimizing the incidence of gingival enlargement in those requiring long-term therapy. According to the study, cytotoxicity increases along with medication concentration. These findings will assist medical professionals in selecting the drug that poses the least risk of adverse effects on gingival health, ultimately guiding more informed prescribing practices.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12033-025-01397-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Drug-induced gingival enlargement (DIGE) is an abnormal overgrowth that may occur as a side effect in some patients when calcium channel blockers, immunosuppressants, or anticonvulsants are taken. The prevalence of DIGE was shown to be 70% for phenytoin (30% for other anticonvulsant medicines) and 50-80% for cyclosporine. The usage of these medications is increasing as new indications emerge. These drugs act through a common mechanism of action at the cellular level by inhibiting intracellular calcium influx. DIGE is characterized by the presence of varied quantities of inflammatory infiltrates, primarily plasma cells, and an excessive build-up of extracellular matrix like-collagen. Fibroblasts, the cells responsible for collagen synthesis, may become hyperactive, leading to the excessive production of collagen fibers. This increased collagen content can result in the enlargement of gingival tissues. As collagen deposits increase, it hinders normal oral care routines, masticatory processes, and esthetics. In this study, we compared the cytotoxicity of phenytoin, gabapentin, and cyclosporine on gingival fibroblast cells using the methyl thiazolyl-tetrazolium assay to understand their effect on gingival fibroblast cells. Phenytoin had the greatest half-maximal inhibitory concentration (IC50) with a value of 305.78 µg/ml, followed by gabapentin with a value of 260.44 µg/ml and cyclosporin with a value of 243.79 µg/ml. Understanding the cytotoxic thresholds of these medications is essential for improving patient outcomes and minimizing the incidence of gingival enlargement in those requiring long-term therapy. According to the study, cytotoxicity increases along with medication concentration. These findings will assist medical professionals in selecting the drug that poses the least risk of adverse effects on gingival health, ultimately guiding more informed prescribing practices.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
药物诱发的牙龈增生:苯妥英、加巴喷丁和环孢素对牙龈成纤维细胞影响的比较研究
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Biotechnology
Molecular Biotechnology 医学-生化与分子生物学
CiteScore
4.10
自引率
3.80%
发文量
165
审稿时长
6 months
期刊介绍: Molecular Biotechnology publishes original research papers on the application of molecular biology to both basic and applied research in the field of biotechnology. Particular areas of interest include the following: stability and expression of cloned gene products, cell transformation, gene cloning systems and the production of recombinant proteins, protein purification and analysis, transgenic species, developmental biology, mutation analysis, the applications of DNA fingerprinting, RNA interference, and PCR technology, microarray technology, proteomics, mass spectrometry, bioinformatics, plant molecular biology, microbial genetics, gene probes and the diagnosis of disease, pharmaceutical and health care products, therapeutic agents, vaccines, gene targeting, gene therapy, stem cell technology and tissue engineering, antisense technology, protein engineering and enzyme technology, monoclonal antibodies, glycobiology and glycomics, and agricultural biotechnology.
期刊最新文献
Isolation and Characterization of an Antioxidant Aryl Polyene Pigment from Antarctic Bacterium Lysobacter sp. A03. Entrapment of Papain in Chitosan-Polyethylene Glycol Hybrid Nanohydrogels: Presenting a Model for Protein Delivery Systems. Emerging Trends of Gold Nanostructures for Point-of-Care Biosensor-Based Detection of COVID-19. Identification of Prognostic Genes in Acute Myeloid Leukemia Microenvironment: A Bioinformatic and Experimental Analysis. Identification of Ferroptosis-Inflammation Related Hub Genes and the Disease Subtypes in Idiopathic Pulmonary Fibrosis via System Biology Approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1