CD47 Peptide-Cloaked Lipid Nanoparticles Promote Cell-Specific mRNA Delivery.

IF 12.1 1区 医学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Molecular Therapy Pub Date : 2025-03-13 DOI:10.1016/j.ymthe.2025.03.018
Tyler Ellis Papp, Jianhao Zeng, Hamna Shahnawaz, Awurama Akyianu, Laura Breda, Amir Yadegari, Joseph Steward, Ruiqi Shi, Qin Li, Barbara L Mui, Ying K Tam, Drew Weissman, Stefano Rivella, Vladimir Shuvaev, Vladimir R Muzykantov, Hamideh Parhiz
{"title":"CD47 Peptide-Cloaked Lipid Nanoparticles Promote Cell-Specific mRNA Delivery.","authors":"Tyler Ellis Papp, Jianhao Zeng, Hamna Shahnawaz, Awurama Akyianu, Laura Breda, Amir Yadegari, Joseph Steward, Ruiqi Shi, Qin Li, Barbara L Mui, Ying K Tam, Drew Weissman, Stefano Rivella, Vladimir Shuvaev, Vladimir R Muzykantov, Hamideh Parhiz","doi":"10.1016/j.ymthe.2025.03.018","DOIUrl":null,"url":null,"abstract":"<p><p>mRNA-based therapeutics delivered via lipid nanoparticles (LNP-mRNA) hold great promise for treating diverse diseases. However, further improvements are needed to refine outcomes in non-vaccine, extrahepatic applications, such as minimizing the mononuclear phagocyte system's (MPS)' rapid clearance and off-target toxicity in undesired tissues. We propose modifying LNP surfaces with the phagocytic cell \"don't eat me\" signal, CD47, in combination with our previously established antibody-based targeted LNP (tLNP) to create a CD47/tLNP platform with reduced phagocytic clearance and off-target effects, and improved efficiency for cell-specific delivery. We showed that CD47 modification decreased macrophage and hepatic uptake both in vitro and in vivo. Combining CD47 modification with antibodies targeting endothelial cells, T cells, or hematopoietic stem cells (HSCs) increased targeting efficiency up to 3-fold compared to tLNP alone. Enhanced targeting of CD47/tLNP to HSCs with reduced off-targeting enabled the delivery of pro-apoptotic mRNA for HSC depletion as a preconditioning strategy prior to bone marrow transplant. Additionally, CD47-modified LNPs showed diminished inflammatory effects on hepatic tissue and an altered protein corona. Our CD47/tLNP-mRNA platform, with its reduced phagocytic clearance, mitigated inflammatory effects, and enhanced targeted delivery, should further facilitate the development of in vivo mRNA therapeutics.</p>","PeriodicalId":19020,"journal":{"name":"Molecular Therapy","volume":" ","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ymthe.2025.03.018","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

mRNA-based therapeutics delivered via lipid nanoparticles (LNP-mRNA) hold great promise for treating diverse diseases. However, further improvements are needed to refine outcomes in non-vaccine, extrahepatic applications, such as minimizing the mononuclear phagocyte system's (MPS)' rapid clearance and off-target toxicity in undesired tissues. We propose modifying LNP surfaces with the phagocytic cell "don't eat me" signal, CD47, in combination with our previously established antibody-based targeted LNP (tLNP) to create a CD47/tLNP platform with reduced phagocytic clearance and off-target effects, and improved efficiency for cell-specific delivery. We showed that CD47 modification decreased macrophage and hepatic uptake both in vitro and in vivo. Combining CD47 modification with antibodies targeting endothelial cells, T cells, or hematopoietic stem cells (HSCs) increased targeting efficiency up to 3-fold compared to tLNP alone. Enhanced targeting of CD47/tLNP to HSCs with reduced off-targeting enabled the delivery of pro-apoptotic mRNA for HSC depletion as a preconditioning strategy prior to bone marrow transplant. Additionally, CD47-modified LNPs showed diminished inflammatory effects on hepatic tissue and an altered protein corona. Our CD47/tLNP-mRNA platform, with its reduced phagocytic clearance, mitigated inflammatory effects, and enhanced targeted delivery, should further facilitate the development of in vivo mRNA therapeutics.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CD47肽包裹的脂质纳米颗粒促进细胞特异性 mRNA 递送
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Therapy
Molecular Therapy 医学-生物工程与应用微生物
CiteScore
19.20
自引率
3.20%
发文量
357
审稿时长
3 months
期刊介绍: Molecular Therapy is the leading journal for research in gene transfer, vector development, stem cell manipulation, and therapeutic interventions. It covers a broad spectrum of topics including genetic and acquired disease correction, vaccine development, pre-clinical validation, safety/efficacy studies, and clinical trials. With a focus on advancing genetics, medicine, and biotechnology, Molecular Therapy publishes peer-reviewed research, reviews, and commentaries to showcase the latest advancements in the field. With an impressive impact factor of 12.4 in 2022, it continues to attract top-tier contributions.
期刊最新文献
CD47 Peptide-Cloaked Lipid Nanoparticles Promote Cell-Specific mRNA Delivery. Immunophenotype of CAR T-cells and associated apheresis products predicts clinical response in a single-center CD22 CAR T-cell therapy trial in B-cell acute lymphoblastic leukemia. Progress in skin gene therapy: from the inside and out. Current and future treatments for sickle cell disease - from hematopoietic stem cell transplantation to in vivo gene therapy. VEGF-B is a novel mediator of endoplasmic reticulum stress which induces angiogenesis in the heart without VEGFR1 or NRP activities via RGD-binding integrins.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1