Zhouwenli Meng, Jian Li, Hui Wang, Zhengqi Cao, Wenqing Lu, Xiaomin Niu, Yi Yang, Ziming Li, Ying Wang, Shun Lu
{"title":"NLRP4 unlocks an NK/macrophages-centered ecosystem to suppress non-small cell lung cancer.","authors":"Zhouwenli Meng, Jian Li, Hui Wang, Zhengqi Cao, Wenqing Lu, Xiaomin Niu, Yi Yang, Ziming Li, Ying Wang, Shun Lu","doi":"10.1186/s40364-025-00756-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Tumor immune evasion extends beyond T cells, affecting innate immune elements like natural killer cells (NK) and macrophages within the tumor-immune microenvironment (TIME). Nevertheless, translational strategies to trigger collaboration of NK cells and macrophages to initiate sufficient anti-tumor cytoxicity remain scarce and are urgently needed.</p><p><strong>Methods: </strong>In this study, TCGA datasets was used to confirm the prognosis value of the expression level of NLR family pyrin domain containing 4 (NLRP4) in NSCLC and the tumor tissues microarray was used to further check its clinical-relevance at protein-level. Subsequently, a tumor cell line with stable NLRP4 overexpression was established and subcutaneous tumor models in C57BL/6J mice were used to validate the anti-tumor characteristics of NLRP4. After analyzing the tumor microenvironment using flow cytometry and multiplex immunofluorescence, we further validated our findings through co-culture transwell assays and TCGA analysis. Utilizing bulk-RNA sequencing, proteomics, and mass spectrometry of mouse tumor tissues, we innovatively identified the downstream pathways of NLRP4 and verified them through co-immunoprecipitation (co-IP) and Western blot (WB) experiments.</p><p><strong>Results: </strong>NLRP4 could trigger a distinct anti-tumor ecosystem organized by TIGIT<sup>+</sup>TNFA<sup>+</sup> NK and iNOS<sup>+</sup> M1 in lung cancer, discovered in TCGA analysis and verified in murine model. NLRP4-eco exerted tumor-suppression capacity through chemokine reprogramming including CCL5 and CXCL2. Meanwhile, the cytoxicity of NK could be facilitated by iNOS<sup>+</sup>M1. Mechanistically, NLRP4 stimulated PI3K/Akt-NF-kB axis through suppression of the activity of PP2A. Besides, knockdown of CCL5 and blockade of CXCL2-CXCR2 axis abolished chemotaxis of TIGIT<sup>+</sup>TNFA<sup>+</sup> NK and iNOS<sup>+</sup> M1 respectively, as well as for LB-100, a PP2A inhibitor.</p><p><strong>Conclusion: </strong>Altogether, we delineated NLRP4's unexplored facets and discovered an NLRP4-driven anti-tumor ecosystem composed of TIGIT<sup>+</sup>TNFA<sup>+</sup> NK and iNOS<sup>+</sup> M1. Finally, targeting PP2A by its inhibitor successfully mimicked the anti-tumor capacity of the overexpression of NLRP4.</p>","PeriodicalId":54225,"journal":{"name":"Biomarker Research","volume":"13 1","pages":"44"},"PeriodicalIF":9.5000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11909883/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomarker Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40364-025-00756-4","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Tumor immune evasion extends beyond T cells, affecting innate immune elements like natural killer cells (NK) and macrophages within the tumor-immune microenvironment (TIME). Nevertheless, translational strategies to trigger collaboration of NK cells and macrophages to initiate sufficient anti-tumor cytoxicity remain scarce and are urgently needed.
Methods: In this study, TCGA datasets was used to confirm the prognosis value of the expression level of NLR family pyrin domain containing 4 (NLRP4) in NSCLC and the tumor tissues microarray was used to further check its clinical-relevance at protein-level. Subsequently, a tumor cell line with stable NLRP4 overexpression was established and subcutaneous tumor models in C57BL/6J mice were used to validate the anti-tumor characteristics of NLRP4. After analyzing the tumor microenvironment using flow cytometry and multiplex immunofluorescence, we further validated our findings through co-culture transwell assays and TCGA analysis. Utilizing bulk-RNA sequencing, proteomics, and mass spectrometry of mouse tumor tissues, we innovatively identified the downstream pathways of NLRP4 and verified them through co-immunoprecipitation (co-IP) and Western blot (WB) experiments.
Results: NLRP4 could trigger a distinct anti-tumor ecosystem organized by TIGIT+TNFA+ NK and iNOS+ M1 in lung cancer, discovered in TCGA analysis and verified in murine model. NLRP4-eco exerted tumor-suppression capacity through chemokine reprogramming including CCL5 and CXCL2. Meanwhile, the cytoxicity of NK could be facilitated by iNOS+M1. Mechanistically, NLRP4 stimulated PI3K/Akt-NF-kB axis through suppression of the activity of PP2A. Besides, knockdown of CCL5 and blockade of CXCL2-CXCR2 axis abolished chemotaxis of TIGIT+TNFA+ NK and iNOS+ M1 respectively, as well as for LB-100, a PP2A inhibitor.
Conclusion: Altogether, we delineated NLRP4's unexplored facets and discovered an NLRP4-driven anti-tumor ecosystem composed of TIGIT+TNFA+ NK and iNOS+ M1. Finally, targeting PP2A by its inhibitor successfully mimicked the anti-tumor capacity of the overexpression of NLRP4.
Biomarker ResearchBiochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
15.80
自引率
1.80%
发文量
80
审稿时长
10 weeks
期刊介绍:
Biomarker Research, an open-access, peer-reviewed journal, covers all aspects of biomarker investigation. It seeks to publish original discoveries, novel concepts, commentaries, and reviews across various biomedical disciplines. The field of biomarker research has progressed significantly with the rise of personalized medicine and individual health. Biomarkers play a crucial role in drug discovery and development, as well as in disease diagnosis, treatment, prognosis, and prevention, particularly in the genome era.