{"title":"A molecular switch OsWRKY10-OsVQ8 orchestrates rice diterpenoid phytoalexin biosynthesis for broad-spectrum disease resistance","authors":"Xianhui Lin, Chaohui Ding, Wei Xiao, Jinhao Wang, Zhuo Lin, Xinli Sun, Suhua Li, Zhiqiang Pan, Rensen Zeng, Yuanyuan Song","doi":"10.1111/nph.70072","DOIUrl":null,"url":null,"abstract":"<p>\n</p><ul>\n<li>Rice plants synthesize a unique group of diterpenoid phytoalexins (DPs) that exhibit broad-spectrum antimicrobial activities and are biosynthesized by enzymes encoded by three biosynthetic gene clusters. However, the regulatory mechanisms of their biosynthesis remain unclear.</li>\n<li>Here, the regulatory roles of the transcription factor OsWRKY10 and its interacting VQ motif-containing protein OsVQ8 in DPs biosynthesis and disease resistance were investigated via genetic and biochemical analyses. Their CRISPR/Cas9-mediated knockout and over-expressing (OE) lines, as well as crossed lines WRKY10<sub>OE</sub>/vq8, were generated. OsVQ8 phosphorylation by mitogen-activated protein kinase (MAPK) cascades was examined.</li>\n<li>We found that OsWRKY10 co-expresses with and activates a specific set of genes involved in DPs biosynthesis, thereby enhancing DPs accumulation and disease resistance against both fungal blast and bacterial blight. We demonstrate that OsWRKY10 interacts with the VQ motif-containing protein OsVQ8, modulating DPs biosynthesis through OsVQ8 phosphorylation by the activated OsMKK4–OsMPK6 cascade upon perception of pathogen-associated molecular patterns.</li>\n<li>Our findings highlight how the interaction between OsVQ8 and OsWRKY10 serves as a molecular switch to regulate gene clusters and the entire pathway of DPs biosynthesis in rice and provides valuable insights for genetic engineering aimed at enhancing phytoalexin production and broad-spectrum disease resistance in staple food crops.</li>\n</ul><p></p>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"33 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Phytologist","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/nph.70072","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Rice plants synthesize a unique group of diterpenoid phytoalexins (DPs) that exhibit broad-spectrum antimicrobial activities and are biosynthesized by enzymes encoded by three biosynthetic gene clusters. However, the regulatory mechanisms of their biosynthesis remain unclear.
Here, the regulatory roles of the transcription factor OsWRKY10 and its interacting VQ motif-containing protein OsVQ8 in DPs biosynthesis and disease resistance were investigated via genetic and biochemical analyses. Their CRISPR/Cas9-mediated knockout and over-expressing (OE) lines, as well as crossed lines WRKY10OE/vq8, were generated. OsVQ8 phosphorylation by mitogen-activated protein kinase (MAPK) cascades was examined.
We found that OsWRKY10 co-expresses with and activates a specific set of genes involved in DPs biosynthesis, thereby enhancing DPs accumulation and disease resistance against both fungal blast and bacterial blight. We demonstrate that OsWRKY10 interacts with the VQ motif-containing protein OsVQ8, modulating DPs biosynthesis through OsVQ8 phosphorylation by the activated OsMKK4–OsMPK6 cascade upon perception of pathogen-associated molecular patterns.
Our findings highlight how the interaction between OsVQ8 and OsWRKY10 serves as a molecular switch to regulate gene clusters and the entire pathway of DPs biosynthesis in rice and provides valuable insights for genetic engineering aimed at enhancing phytoalexin production and broad-spectrum disease resistance in staple food crops.
期刊介绍:
New Phytologist is an international electronic journal published 24 times a year. It is owned by the New Phytologist Foundation, a non-profit-making charitable organization dedicated to promoting plant science. The journal publishes excellent, novel, rigorous, and timely research and scholarship in plant science and its applications. The articles cover topics in five sections: Physiology & Development, Environment, Interaction, Evolution, and Transformative Plant Biotechnology. These sections encompass intracellular processes, global environmental change, and encourage cross-disciplinary approaches. The journal recognizes the use of techniques from molecular and cell biology, functional genomics, modeling, and system-based approaches in plant science. Abstracting and Indexing Information for New Phytologist includes Academic Search, AgBiotech News & Information, Agroforestry Abstracts, Biochemistry & Biophysics Citation Index, Botanical Pesticides, CAB Abstracts®, Environment Index, Global Health, and Plant Breeding Abstracts, and others.