Spin-Deposited Ruddlesden–Popper Polycrystalline Perovskites for Large-Area High-Sensitivity Filterless Narrowband Photodetectors with Ultrafast Response Speed

IF 9.8 1区 物理与天体物理 Q1 OPTICS Laser & Photonics Reviews Pub Date : 2025-03-17 DOI:10.1002/lpor.202402077
Lihua Lu, Ziang Wan, Zhongli Guo, Hongqiang Luo, Yuanyuan Tian, Sijie Jiang, Yikai Yun, Hailong Hu, Sijia Zhou, Mengyu Chen, Cheng Li, Rong Zhang
{"title":"Spin-Deposited Ruddlesden–Popper Polycrystalline Perovskites for Large-Area High-Sensitivity Filterless Narrowband Photodetectors with Ultrafast Response Speed","authors":"Lihua Lu, Ziang Wan, Zhongli Guo, Hongqiang Luo, Yuanyuan Tian, Sijie Jiang, Yikai Yun, Hailong Hu, Sijia Zhou, Mengyu Chen, Cheng Li, Rong Zhang","doi":"10.1002/lpor.202402077","DOIUrl":null,"url":null,"abstract":"Filterless perovskite narrowband photodetectors (PNPDs) are highly demanded in color and spectral discrimination, which are typically demonstrated by charge collection narrowing (CCN) effect of perovskite single crystals, showing a limited sensing area and slow response speed. Here, fast-response, high-sensitivity PNPDs are demonstrated using spin-deposited polycrystalline 2D (poly-2D) Ruddlesden–Popper (RP) perovskite films with thickness of ≈3.6 µm. The strong narrowband excitonic light absorption and limited charge diffusion length of poly-2D RP perovskites enable a favored long-wavelength response and a significant suppression of short-wavelength response to further strengthen the CCN effect. In particular, the photodetection properties, as well as the spectral rejection ratio and central response wavelength, can be finely tuned with an alkyl chain length of the spacer cations. The optimized devices achieve a narrow spectral response with a full-width at half-maximum of 12.7 nm, a record high peak specific detectivity of 1.09 × 10<sup>12</sup> Jones and ultrafast response speed with rise/fall times of 5.6/11.5 µs, which outperform the published similar PNPDs. Moreover, a spin-deposited large-area sensing array with 6 × 6 PNPDs is fabricated with high consistency, for efficient color and shape discrimination demonstrations. This facile and versatile approach sheds light on the practical applications of large-area high-performance filterless PNPDs.","PeriodicalId":204,"journal":{"name":"Laser & Photonics Reviews","volume":"69 1","pages":""},"PeriodicalIF":9.8000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser & Photonics Reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/lpor.202402077","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Filterless perovskite narrowband photodetectors (PNPDs) are highly demanded in color and spectral discrimination, which are typically demonstrated by charge collection narrowing (CCN) effect of perovskite single crystals, showing a limited sensing area and slow response speed. Here, fast-response, high-sensitivity PNPDs are demonstrated using spin-deposited polycrystalline 2D (poly-2D) Ruddlesden–Popper (RP) perovskite films with thickness of ≈3.6 µm. The strong narrowband excitonic light absorption and limited charge diffusion length of poly-2D RP perovskites enable a favored long-wavelength response and a significant suppression of short-wavelength response to further strengthen the CCN effect. In particular, the photodetection properties, as well as the spectral rejection ratio and central response wavelength, can be finely tuned with an alkyl chain length of the spacer cations. The optimized devices achieve a narrow spectral response with a full-width at half-maximum of 12.7 nm, a record high peak specific detectivity of 1.09 × 1012 Jones and ultrafast response speed with rise/fall times of 5.6/11.5 µs, which outperform the published similar PNPDs. Moreover, a spin-deposited large-area sensing array with 6 × 6 PNPDs is fabricated with high consistency, for efficient color and shape discrimination demonstrations. This facile and versatile approach sheds light on the practical applications of large-area high-performance filterless PNPDs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
14.20
自引率
5.50%
发文量
314
审稿时长
2 months
期刊介绍: Laser & Photonics Reviews is a reputable journal that publishes high-quality Reviews, original Research Articles, and Perspectives in the field of photonics and optics. It covers both theoretical and experimental aspects, including recent groundbreaking research, specific advancements, and innovative applications. As evidence of its impact and recognition, Laser & Photonics Reviews boasts a remarkable 2022 Impact Factor of 11.0, according to the Journal Citation Reports from Clarivate Analytics (2023). Moreover, it holds impressive rankings in the InCites Journal Citation Reports: in 2021, it was ranked 6th out of 101 in the field of Optics, 15th out of 161 in Applied Physics, and 12th out of 69 in Condensed Matter Physics. The journal uses the ISSN numbers 1863-8880 for print and 1863-8899 for online publications.
期刊最新文献
Refraction and Coupling of Topological Edge State Based on Silicon Valley Photonic Crystals Generation of Arbitrary Vector Vortex Beam Using a Single Q-Plate Spin-Deposited Ruddlesden–Popper Polycrystalline Perovskites for Large-Area High-Sensitivity Filterless Narrowband Photodetectors with Ultrafast Response Speed Reprogrammable Vector Optical Field Meets Planar Liquid Crystal Elements for Enhanced Security in Holography Spatio-Spectral Customized Light Structures for Subwavelength Highly Resolved Multiplexing of Diffractive Optics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1